Induktionsmaschine im Motorbetrieb

Slides:



Advertisements
Ähnliche Präsentationen
Grundwissen / Lernfeld 3
Advertisements

Der Elektromotor Von Moritz und Jan.
Der Universalmotor Kurzfassung der Projektarbeit im SS 2007 von
3.2 Elektrische Maschinen
Akademische Bildung - Studiengänge ABC – Analyse
PowerPoint Präsentation
Nomografisches Diagramm
Schleifen-beobachtung
Lies genau und mach Dir ein Bild!
Aufbau und Strahlengang Laserstrahlaufweitung
Digitales Arbeiten im Deutschunterricht Einblick in verschiedene Lernwege Eckehart Weiß Präsentation Bildergeschichten.
Die Farben im Logo MT-Rot [255,102,0] MT-Blau [0,51,204]
Ein Effekt der Induktion
Induktion bei Änderung des magnetischen Flusses
Elektromotoren 1 Stromwender- bzw. Kommutator-Maschine
Optische Täuschungen.
Optische Illusionen Falls sich etwas bewegt:
DAS FRIEDENSLICHT IM ADVENT!.
Energie zum Aufbau elektromagnetischer Felder
Optische Halbleiterbauelemente
Summe von Vektoren.
Wie funktioniert eine Digitalkamera?
Inhalt Reihenschaltung von Elektromagnetische Schwingung Kondensator
Drehstrom, Wechselstrom
Strom made by… Stefan Hollnbuchner
DIE FARBEN.
Werkzeugmaschinen Antriebe Hauptantriebe © Prof. Dr. H.-J. Weber 09.04
Luba Wenzel – Simon Geis
Induktion eines magnetischen Feldes
Induktion bei Änderung des magnetischen Flusses
Induktion eines elektrischen Felds
Erzeugung magnetischer Feldstärke im Vakuum
Der Mond wendet der Erde immer die gleiche Seite zu.
Die FARBEN.
Experimentelle Stoffuntersuchung
Einige Animationen werden automatisch gestartet
Elektromotoren Elektromotor bezeichnet einen elektromechanischen Wandler, der elektrische Energie in mechanische Energie umwandelt. In Elektromotoren wird.
Was das Hirn alles kann …
Mathematik dazu: Maxwellsche Gleichungen
Inhalt Reihenschaltung von Elektromagnetische Schwingung Kondensator
Der Satz des Pythagoras
18. Versorgung mit elektrischer Energie
Ich bin 11 Jahre alt und beschäftige mich mit Powerpoint.
Heutige Ziele Abschluss Kapitel 2 Aufgabenblatt
(C) R.SIE Der Elektromotor S N
Versuch Bitte seht euch die Bilder möglichst genau an, wir werden euch danach ein paar Fragen dazu stellen! Viel Spaß.
Wie siehst du aus?.
Die Selbstinduktion.
Elektrizitätslehre Lösungen.
Vermischte Aufgaben zur Wiederholung Löse die Aufgaben sauber auf einem Blatt Papier oder im Schulheft. Und nun geht’s los!
Loch 1 PAR 4 Hcp 9 Bahnlängen Weiß: 326 Gelb:322 Blau: 285 Rot:
Visuelle Hilfsmittel Zusammengefasst von Karin Burgmann
Unser Thema: Die Jahreszeiten. In der Stadt ist nun Winter.
Die elektro-magnetische Induktion
Synchronmaschine im Stillstand
Kommutatormaschine (gleichstromgespeist)
Frequenzumrichter (Motor-Anlauf) © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW.
Wann und wie fliesst elektrischer Strom?
Synchronisation eines Generators mit dem Netz
Weihnachten.
Wollen wir noch etwas wiederholen?
Welche Farbe? Die Haare sind lang und braun Die Mütze ist grün
2 3 1 Animationspfad Elemente sollen sich bewegen
Elektrische Energietechnik
Es ist ein ORANGER KREIS
+ -- Kein Licht fällt auf den lichtempfindlichen Widerstand! Er leitet nicht!
Wie siehst du aus?.
Elektrizitätsversorgung 4.0 oder: Data Girl hilft Power Guy
Erzeugung des Stator-Drehfeldes
 Präsentation transkript:

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt.

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW

Induktionsmaschine im Motorbetrieb Der Stator erzeugt (wie in der separaten Animation gezeigt) wiederum ein Drehfeld (langer, unterbrochener, weißer Pfeil). Der Rotor dreht sich leicht langsamer als das Stator-Drehfeld (positiver Schlupf – genau beobachten!). Die im Rotor induzierten Ströme (grün: auf uns zu; rot: von uns weg) behalten aber ihre Phasenlage gegenüber dem Drehfeld (Farbänderungen beobachten)! Entsprechend dreht auch das induzierte Rotor-Magnetfeld (kurzer weißer Pfeil) synchron zum Statordrehfeld. Die Power-Point-Animation ersetzt die frühere PDF-Animation. © Max Blatter. Verwendung für schulische Zwecke erlaubt. © Max Blatter, Dozent „Elektrische Energietechnik“ im Studiengang WIng, Hochschule für Technik FHNW