§10 Vektorraum. Definition und Beispiele

Slides:



Advertisements
Ähnliche Präsentationen
Hier einige Hieroglyphen:
Advertisements

Vorlesung Compilertechnik Sommersemester 2008
Definition [1]: Sei S eine endliche Menge und sei p eine Abbildung von S in die positiven reellen Zahlen Für einen Teilmenge ES von S sei p definiert.
2.3 Kodierung von Zeichen 2.4 Kodierung von Zahlen
Polynomial Root Isolation
Schnelle Matrizenoperationen von Christian Büttner
Claudio Moraga; Gisbert Dittrich
13. Transformationen mit Matrizen
Komplexe Zahlen und Fourier-Transformation
Ein Modellansatz zur Beschreibung von Vagheiten
Kapitel 5 Stetigkeit.
Kapitel 1 Die natürlichen und die ganze Zahlen. Kapitel 1: Die natürlichen und die ganzen Zahlen © Beutelspacher/Zschiegner April 2005 Seite 2 Inhalt.
Kapitel 6 Differenzierbarkeit. Kapitel 6: Differenzierbarkeit © Beutelspacher Juni 2005 Seite 2 Inhalt 6.1 Die Definition 6.2 Die Eigenschaften 6.3 Extremwerte.
Kapitel 2 Die rationalen und die irrationalen Zahlen.
Kapitel 3 Die reellen Zahlen
Beispiele für Ausdrucksalgebren
Quaternionen Eugenia Schwamberger.
Mathematische Grundlagen und Rechnen mit algebraischen Zahlen
Folie 1 Kapitel II. Vom Raumbegriff zu algebraischen Strukturen Neubeginn: Herleitung des Begriffs Vektorraum aus intuitiven Vorstellungen über den Raumbegriff.
§14 Basis und Dimension (14.1) Definition: V sei wieder ein K-Vektorraum. Eine Menge B von Vektoren aus V heißt Basis von V, wenn B ist Erzeugendensystem.
Folie 1 § 30 Erste Anwendungen (30.2) Rangberechnung: Zur Rangberechnung wird man häufig die elementaren Umformungen verwenden. (30.1) Cramersche Regel:
§9 Der affine Raum – Teil 2: Geraden
§ 28 Multilineare und Alternierende Abbildungen
§9 Der affine Raum – Teil 2: Geraden
§14 Basis und Dimension  (14.1) Definition: V sei wieder ein K-Vektorraum. Eine Menge B von Vektoren aus V heißt Basis von V, wenn B ist Erzeugendensystem.
§11 Skalarprodukt. Euklidische Räume
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
Kapitel V. Determinanten
Folie 1 § 29 Determinanten: Eigenschaften und Berechnung (29.1) Definition: Eine Determinantenfunktion auf K nxn ist eine Abbildung (im Falle char(K) ungleich.
§ 29 Determinanten: Eigenschaften und Berechnung
Seminar Stringtheorie und Geometrische Methoden der Physik
§17 Produkte und Quotienten von Vektorräumen
§24 Affine Koordinatensysteme
Vektoren Grundbegriffe für das Information Retrieval
5. Erweiterungen der Zahlenmenge
Zeit: 13h-15h Datum: Raum: IFW B42
§10 Vektorraum. Definition und Beispiele
§20 Der Rang einer Matrix Jede (m,n)-Matrix kann auch als ein n-Tupel von Spaltenvektoren geschrieben werden: wobei (20.1) Definition:
Folie 1 §15 Lineare Abbildungen (15.1) Definition: Eine Abbildung f zwischen K-Vektorräumen V und W ist linear (oder ein Vektorraumhomomorphismus), wenn.
§15 Lineare Abbildungen (15.1) Definition: Eine Abbildung f zwischen K-Vektorräumen V und W ist linear (oder ein Vektorraumhomomorphismus), wenn für alle.
Folie 1 § 28 Multilineare und Alternierende Abbildungen (28.1) Definition: V und W seien wieder ein K-Vektorräume. Eine Abbildung von V nach W stets linear.
Folie 1 Kapitel IV. Matrizen Inhalt: Matrizen als eigenständige mathematische Objekte Zusammenhang zwischen Matrizen und linearen Abbildungen Produkt von.
§23 Basiswechsel und allgemeine lineare Gruppe
§3 Allgemeine lineare Gleichungssysteme
Fuzzymengen – Was ist das?
Institut für Theoretische Informatik
Institut für Theoretische Informatik
Infinitesimalrechnung
ENDLICHE KÖRPER RSA – VERFAHREN.
Automaten, formale Sprachen und Berechenbarkeit II SoSe 2004 Prof. W. Brauer Teil 3: Potenzreihen und kontextfreie Sprachen (Vgl. Buch von A. Salomaa)
Stetige Kleinste-Quadrate-Approximation
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
Folie 1 §21 Das Produkt von Matrizen (21.1) Definition: Für eine (m,n)-Matrix A und eine (n,s)-Matrix B ist das (Matrizen-) Produkt AB definiert als (21.2)
Grundlagen01Logik 02Mengen 03Relationen Arithmetik04Die natürlichen Zahlen 05Erweiterungen der Zahlenmenge Elementare Geometrie06Ebene Geometrie 07Trigonometrie.
Kapitel 4 Restklassen (die modulo-Rechnung)
Syntax, Semantik, Spezifikation - Grundlagen der Informatik R. Hartwig Kapitel 3 / 1 Algebraische Hülle und Homomorphie A = [A, F ] sei  -Algebra. Eine.
Graphische Datenverarbeitung
? definierende Gleichungen  gültige Gleichungen ?
 Sortigkeit oder Arität
Kapitel 7 Flächen und Volumen
8. Vektoren. 8. Vektoren Ortsvektor oder Polarvektor.
Folie 1 §8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein.
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
§17 Produkte und Quotienten von Vektorräumen
§23 Basiswechsel und allgemeine lineare Gruppe
§11 Skalarprodukt. Euklidische Räume
Kapitel I. Vorspann zum Begriff Vektorraum
Kapitel II. Vom Raumbegriff zu algebraischen Strukturen
 Präsentation transkript:

§10 Vektorraum. Definition und Beispiele Der Begriff des Vektorraumes wurde in den letzten Paragrafen entwickelt. Wir wiederholen (vgl. auch 2.3) : (10.1) Definition: Ein Vektorraum über dem Körper K ist eine additive abelsche Gruppe V, also für alle x,y,z aus V : 1o (x + y) + z = x + (y + z) 2o Es gibt 0 (Nullvektor) mit: x + 0 = x = 0 + x . 3o Zu jedem x aus V existiert -x aus V mit x+(-x) = 0. 4o x + y = y + x , zusammen mit einer Skalarmultiplikation so dass für alle x,y aus V und alle r,s aus K : 5o 1x = x . 6o r(x + y) = rx + ry . 7o (r + s)x = rx + sx . 8o (rs)x = r(sx) .

Kapitel II, §10 (10.2) Bemerkungen: Sei V eine Vektorraum über K. (V wird auch kurz K-Vektorraum genannt.) Dann gilt für all x aus V und all r aus K: 1o r(0) = 0 (0 ist der Nullvektor.) 2o 0x = 0 (Linke Seite: 0 ist die Null im Körper K; rechte Seite: 0 ist der Nullvektor.) 3o (-1)x = -x . 4o (-1)(-1) = 1 und 0r = 0 im Körper K. (10.3) Definition: Sei V eine Vektorraum über K. Ein Untervektor-raum ist eine Menge U in V, die bezüglich der auf V gegebenen Addition und Skalarmultiplikation ein Vektorraum über K ist. Wie für Untergruppen (vgl. 8.11) haben wir den Satz: (10.4) Satz: Sei V eine Vektorraum über K. Eine nichtleere Menge U in V ist genau dann ein Untervektorraum, wenn für alle x,y in U und alle r aus K gilt: x+y, -y und rx liegen in U .

Kapitel II, §10 (10.5) Beispiele: Sei V eine Vektorraum über K. 1o {0} und V sind Untervektorräume von V. 2o Sei v aus V\{0} . Dann ist die Menge Kv := {rv : r aus K} ein Untervektorraum von V . 3o {(r,s,0) : r,s aus K} ist ein Untervektorraum von K3 . 4o Sind U und W Untervektorräume von V, so ist auch der Durchschnitt eine Untervektorraum. 5o Für die Vereinigung gilt das in der Regel nicht. Weitere Beispiele von Vektorräumen: (10.6) Folgenräume: Es geht zunächst um Folgen in der Analysis. Sei F die Menge aller Folgen x = (x0, x1, x2, ... ) reeller Zahlen xk . 1o F ist ein Vektorraum über R bezüglich der komponentenweise Addition und Multiplikation. 2o Fb := {x aus F: x ist beschränkt} ist ein Untervektorraum von F.

Kapitel II, §10 3o Fk := {x aus F: x ist konvergent} ist ein Untervektorraum von Fb. 4o F0 := {x aus F: x ist Nullfolge} ist Untervektorraum von Fk. F0 wird meistens mit c0 bezeichnet. 5o Fhp := {x aus F: x hat einen Häufungspunkt in R} ist kein Untervektorraum von F. 6o Fe := {x aus F: {xk : k aus N} ist endlich} ist ein Untervektorraum von Fk. 7o Fc := {x aus F: x ist konstant ab einem Index m} ist ein Untervektorraum von Fk und Fe , und zwar der Durchschnitt dieser beiden Untervektorräume. 8o Definition: Eine Folge x = (xk) aus F heißt absolut summier- bar, wenn die Reihe mit dem allgemeinen Glied |xk| konvergiert. := {x aus F: x ist absolut summierbar} ist ein Untervektorraum von c0 .

Kapitel II, §10 9o Definition: Eine Folge x = (xk) aus F heißt quadratsummier- bar, wenn die Reihe mit dem allgemeinen Glied |xk|2 konvergiert. := {x aus F: x ist quadratsummierbar} ist ein Untervektorraum von c0 . (10.7) Räume komplexer Zahlenfolgen: Entsprechend hat man den Raum aller komplexen Zahlenfolgen und die zu 10.6 analogen Untervektorräume: Zu 2o benötigt man den Betrag in C , gegeben als |z| := für z = x + iy , x,y aus R . Zu 3o und 4o: Eine komplexe Zahlenfolge zk = xk + iyk ist genau dann konvergent mit Grenzwert z = x + iy , wenn (xk) gegen x und (yk) gegen y konvergieren, dh. wenn |zk - z| gegen 0 konvergiert. Zu 5o, 8o und 9o: Analog überträgt man die Definition von Häufungspunkt, absolut summierbar und quadratsummierbar auf komplexe Zahlenfolgen zk = xk + iyk .

Kapitel II, §10 (10.8) Räume von Abbildungen: Sei K ein Körper und M eine Menge. Die Menge der Abbildungen Abb(M,K) = KM ist in natürlicher Weise ein K-Vektorraum bezüglich: (f+g)(m) := f(m) + g(m) , (rf)(m) := rf(m) für f,g aus KM , Für alle m aus M und r aus K . Bemerkungen: 1o Der in 10.6 (bzw. in 10.7) beschriebene Folgenraum ist RN (bzw. CN). Allgemeinere Folgenräume (Folgen von Körperele-menten aus K) sind die KN. 2o Auch der Standardraum Kn ist als Abbildungsraum aufzufassen, es handelt sich um KM für M = {1,2, ... ,n} . 3o Für einen Vektorraum V über K ist auch VN , der Raum der Folgen in V, ein Vektorraum von Abbildungen.

Kapitel II, §10 4o Für einen Vektorraum V über K ist ganz allgemein VM ein K-Vektorraum. 5o Die meisten Vektorräume von Bedeutung in der Analysis sind Untervektorräume von KM für K = R oder K = C . (10.9) Räume von Abbildungen mit endlichem Träger: Der Träger einer Abbildung x aus Abb(M,K) = KM ist nach Definition die Menge T = T(x) := {m aus M : x(m) ist nicht Null} . KM hat als Untervektorraum den Raum K(M) := {x : x aus Abb(M,K) mit endlichem Träger} . Sei für a aus M die Abbildung durch Bemerkung: Offensichtlich ist ein Element von K(M) . Es gilt: Jedes Element x aus K(M) hat eine eindeutige Darstellung als endliche Summe der Form:

Kapitel II, §10 mit geeigneten von Null verschiedenen xk aus K und ak aus M . (10.10) Polynome: Die Folgen mit endlichem Träger in einem Körper, also die Vektoren aus K(N) , lassen sich auch als Polynome mit Koeffizienten aus K auffassen: Die für n aus N schreibe man als Tn , dann hat nach dem Vorangehenden ein Element p aus K(N) stets die Form: mit den Koeffizienten pk aus K (hier dürfen einige der pk Null sein). Den K-Vektorraum der Polynome mit Koeffizienten schreibt man auch als K[T] . Ein Polynom p der Form bestimmt eine Abbildung von K nach K, die zugehörige Polynomabbildung, die folgendermaßen definiert ist:

Kapitel II, §10 In diesem Sinne ist K[T] ein Untervektorraum von KK . (10.11) Stetige und differenzierbare Abbildungen: I sei ein Intervall in R . Dann ist C(I) := {f : f ist aus RI und f ist stetig} ein Untervektorraum von RI . Ferner ist Ck(I) := {f : f ist aus RI und f ist k-mal stetig differenzierbar} ein Untervektorraum von Ck-1(I) . R[T] als Raum von Polynomabbildungen von R nach R lässt sich als Untervektorraum von Ck(I) auffassen. Zurück zu den affinen Räumen, mit denen wir den Begriff des Vektorraumes motiviert haben: Es sei V ein Vektorraum über K . Setze A = A(V) := V , T = T(V) := V und t(P,Q) := Q – P für P,Q aus A . Dann ist (A(V), T(V), t) ein affiner Raum !