(Un-)sicherheiten in Ökosystemmodellierung Extended multistep outflow method for the accurate determination of soil hydraulic properties close to water saturation (Un-)sicherheiten in Ökosystemmodellierung W. Durner und S.C. Iden, SS2012. Unsicherheiten - 2
Inhalt Ökosysteme/Modelle Daten, Fehler, Unsicherheiten Fehlerrechnung Parameterschätzung Stochastik Intervallarithmetik Fuzzy Set Theorie Monte Carlo Verfahren
Daten-/Parametererfassung Messen – im Feld Schätzen Messen – im Labor Kartierung Literaturwerte Expertenwissen
Unsicherheiten Differenzierung unvollkommenen Wissens: Unwissenheit (ignorance) Unsicherheit (uncertainty) Ungenauigkeit (imprecision) Vagheit (vagueness)
Der Boden ist „gut drainend“! Unsicherheiten Vagheit (vageness): „weiche“ Information Expertenwissen – linguistische Terme Subjektive Interpretationen Der Boden ist „gut drainend“!
Unsicherheiten Ungenauigkeit (imprecision): Beobachtungs-/Messgenauigkeit Rundungsfehler
Unsicherheiten Unsicherheit (uncertainty): Zufallsprozess - Stochastischer Prozess
Der Begriff »Fehler« charakterisiert … Unsicherheit von Werten Streuung Genauigkeit statistischer Fehler unscharfe Eingangsgrößen Falsche Werte Ausreißer Grobe Schnitzer Rechenfehler Falsches Modell
Fehlerklassifikation Grobe Fehler Systematische Fehler Stochastische Fehler
Fehlerdetektion Detektion grober Fehler durch ... Rohdatensichtung Plausibilitätsüberlegungen Ausreißerbetrachtungen Beispiel 1: H1D-Modellierung von Katharina Meurer - Kommafehler Beispiel 2: Fehler – falsch aufgezeichnet, möglichger Gerätedefekt,!! Beispiel 3: Vorsocht Falle: Ozonwerte über Antarktis
Bsp.:Tensiometerwerte bei Eichung Visuelle Inspektion der Daten in Tabelle bringt wenig. Besser: graphische Visualisierung
Bsp.:Tensiometerwerte bei Eichung
Bsp. Plausibilitätsüberlegungen
Ausreißer P(-<x< +) ~ 68.3% P(-2<x< +2) ~ 95.5% P(-3<x< +3) ~ 99.7% P(-4<x< +4) ~ 99.994% -, 2 sigma einmal in 22 3 sigma einaml in 370 4 sigma einmal in 15625 Beispiele
Fehlerdetektion Detektion systematischer Fehler durch ... Messvergleiche Standversuche
Bsp.: Systematische Temperaturdrift
Systematische Fehler ... Können nicht aus Datenstreuung abgeleitet werden (nachträgliche) Korrektur der Daten möglich Vermeidung: durch Anwendung unterschiedlicher und voneinander unabhängige Verfahren Praxis: Ringversuche
Zufällige Fehler - wahrer Wert
Niedrige Streuung: hohe Präzision Zufällige Fehler - wahrer Wert - Messung Niedrige Streuung: hohe Präzision
Hohe Streuung: niedrige Präzision Zufällige Fehler - wahrer Wert - Messung Hohe Streuung: niedrige Präzision
Systematische plus stochastische Fehler - wahrer Wert - Messung hohe Präzision geringe Richtigkeit
Systematische plus stochastische Fehler - wahrer Wert - Messung geringe Präzision geringe Richtigkeit
Definitionen Genauigkeit (accuracy, nach DIN 55350): Qualitative Bezeichung für das Ausmaß der Annäherung von Ermittlungsergebnissen an den Bezugswert, wobei dieser je nach Festlegung oder Vereinbarung der wahre, der richtige oder der Erwartungswert sein kann. Richtigkeit (trueness, accuracy of the mean, nach DIN 55350): Qualitative Bezeichung für das Ausmaß der Annäherung des Erwartungswertes des Ermittlungsergebnisses an den Bezugswert, wobei dieser je nach Festlegung oder Vereinbarung der wahre oder der richtige Wert sein kann. Präzision (precision, nach DIN 55350): Qualitative Bezeichung für das Ausmaß der gegenseitigen Annäherung voneinander unabhängiger Ermittlungsergebnisse bei mehrfacher Anwendung eines festgelegten Ermittlungsverfahrens unter vorgegebenen Bedingungen. Genauigkeit: wie gut komme ich mit jeder Messung an den wahren Wert heran Richtigkeit: wie gut liegt der Mittelwert einer Stichprobe am wahren Wert Präzision: Mass für die Streuung.
@4 Eventuell Durchführung einers Ausreissertests!
Klassifiziren Sie Messfehler! Datenbeispiel: Retentionsmesungen Boku-Praktikum 2001 Übung: Messen von Ks aus unterschiedlichen Grundgesamtheiten. Schätzen des Konfidensintervalle
Messungen Retentionsdaten - Boku2 Praktikum SS 2001:
Messungen Retentionsdaten - Boku2 Praktikum SS 2001: zufälliger Fehler systematischer Fehler Grober Fehler
Zusammenfassung >>Fehler<< Fehler bei Messungen: Messwert = wahrer Wert + grober Fehler + systematischer Fehler + zufälliger Fehler
Stochastik
Fehlermodelle Quantifizierung der Fehlerwahrscheinlichkeit über Wahrscheinlichkeitsdichtefunktionen: Gleichverteilung Normalverteilung Lognormalverteilung Exponentialverteilung . . .
Verteilungen Normalverteilungen:
Verteilungen Kontinuierliche Wahrscheinlichkeitsverteilung 1D X1=-1.96
Verteilungen Kontinuierliche Wahrscheinlichkeitsverteilung 1D 0.95 X1=-1.96 X2=1.96 0.95
Verteilungen Kontinuierliche Wahrscheinlichkeitsverteilung 2D
Verteilungen Log - Normalverteilungen:
Verteilungen Weibull:
Verteilungen Exponential:
Verringerung zufälliger Fehler Zentraler Grenzwertsatz: n Zufallsvariablen Xi, Erwartungswerte m, Varianz s2 z ~ Z = (X1 + ...+ Xn)/n n Z ist normalverteilt (unabhängig von der Verteilung von Xi) E(Z) = m Var(Z) = s2/n
Stochastik Konfidenzintervalle: Mittelwert: Fehler des Mittelwertes: Konfidenzintervall (z.B. 95%): Normalverteilung
@5 Übung: Messen von Ks aus unterschiedlichen Grundgesamtheiten. Schätzen des Konfidensintervalle
Bestimmen Sie Konfidenzintervalle für ihre Messungen von Ks! Programme Messung 1-3 im Verzeichnis „Daten Bophys/Unsicherheiten“! Führen Sie 5, 10, 100, 1000 Messungen durch und bestimmen die Konfidenzintervalle für ihre Schätzung des tatsächlichen Ks-Wertes! Übung: Messen von Ks aus unterschiedlichen Grundgesamtheiten. Schätzen des Konfidensintervalle