§ 28 Multilineare und Alternierende Abbildungen

Slides:



Advertisements
Ähnliche Präsentationen
Zufallsfelder Def. Zufallsfeld: Sei V eine endliche Menge (von Orten). Für jedes v V existiere eine (endliche) Menge X(v) von Zuständen x(v). Der Raum.
Advertisements

Schnelle Matrizenoperationen von Christian Büttner
Zusatzthemen. Kapitel 5 © Beutelspacher Juni 2004 Seite 2 Inhalt Gleichungssysteme mit Parameter Wurzelgleichungen Irrationale Zahlen Induktion WGMS III.
Claudio Moraga; Gisbert Dittrich
Prof. Dr. W. Conen 15. November 2004
13. Transformationen mit Matrizen
R. Der - Vorlesung Algorithmen und Datenstrukturen (Magister)
Syntax, Semantik, Spezifikation - Grundlagen der Informatik R. Hartwig Kapitel 4 / 1 Termalgebren Definition "Freie Algebra" Die -Algebra A = [A, F ] heißt.
Algorithmentheorie 04 –Hashing
WS Algorithmentheorie 02 - Polynomprodukt und Fast Fourier Transformation Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (06 – Reduktion endlicher Automaten) Prof. Dr. Th. Ottmann.
Kapitel 5 Stetigkeit.
Kapitel 6 Differenzierbarkeit. Kapitel 6: Differenzierbarkeit © Beutelspacher Juni 2005 Seite 2 Inhalt 6.1 Die Definition 6.2 Die Eigenschaften 6.3 Extremwerte.
Kapitel 2 Zählen (Kombinatorik)
Kapitel 2 Die rationalen und die irrationalen Zahlen.
Kapitel 4 Geometrische Abbildungen
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
Quaternionen Eugenia Schwamberger.
Irreduzibilität Andreas Flesch.
Folie 1 Kapitel II. Vom Raumbegriff zu algebraischen Strukturen Neubeginn: Herleitung des Begriffs Vektorraum aus intuitiven Vorstellungen über den Raumbegriff.
§14 Basis und Dimension (14.1) Definition: V sei wieder ein K-Vektorraum. Eine Menge B von Vektoren aus V heißt Basis von V, wenn B ist Erzeugendensystem.
Folie 1 § 30 Erste Anwendungen (30.2) Rangberechnung: Zur Rangberechnung wird man häufig die elementaren Umformungen verwenden. (30.1) Cramersche Regel:
§9 Der affine Raum – Teil 2: Geraden
§9 Der affine Raum – Teil 2: Geraden
§14 Basis und Dimension  (14.1) Definition: V sei wieder ein K-Vektorraum. Eine Menge B von Vektoren aus V heißt Basis von V, wenn B ist Erzeugendensystem.
§11 Skalarprodukt. Euklidische Räume
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
Kapitel V. Determinanten
Folie 1 § 29 Determinanten: Eigenschaften und Berechnung (29.1) Definition: Eine Determinantenfunktion auf K nxn ist eine Abbildung (im Falle char(K) ungleich.
§ 29 Determinanten: Eigenschaften und Berechnung
Matrix-Algebra Grundlagen 1. Matrizen und Vektoren
§10 Vektorraum. Definition und Beispiele
§17 Produkte und Quotienten von Vektorräumen
§24 Affine Koordinatensysteme
Vektoren Grundbegriffe für das Information Retrieval
Lineare Algebra Komplizierte technologische Abläufe können übersichtlich mit Matrizen dargestellt werden. Prof. Dr. E. Larek
Effiziente Algorithmen
Beweissysteme Hartmut Klauck Universität Frankfurt WS 06/
§10 Vektorraum. Definition und Beispiele
§20 Der Rang einer Matrix Jede (m,n)-Matrix kann auch als ein n-Tupel von Spaltenvektoren geschrieben werden: wobei (20.1) Definition:
Folie 1 §15 Lineare Abbildungen (15.1) Definition: Eine Abbildung f zwischen K-Vektorräumen V und W ist linear (oder ein Vektorraumhomomorphismus), wenn.
§15 Lineare Abbildungen (15.1) Definition: Eine Abbildung f zwischen K-Vektorräumen V und W ist linear (oder ein Vektorraumhomomorphismus), wenn für alle.
Folie 1 § 28 Multilineare und Alternierende Abbildungen (28.1) Definition: V und W seien wieder ein K-Vektorräume. Eine Abbildung von V nach W stets linear.
Folie 1 Kapitel IV. Matrizen Inhalt: Matrizen als eigenständige mathematische Objekte Zusammenhang zwischen Matrizen und linearen Abbildungen Produkt von.
§23 Basiswechsel und allgemeine lineare Gruppe
§3 Allgemeine lineare Gleichungssysteme
Lineare Algebra, Teil 2 Abbildungen
Inhalt Vorbemerkung Vorstellung einer Unterrichtssequenz Kritik
Multivariate Statistische Verfahren
§22 Invertierbare Matrizen und Äquivalenz von Matrizen
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
Folie 1 §21 Das Produkt von Matrizen (21.1) Definition: Für eine (m,n)-Matrix A und eine (n,s)-Matrix B ist das (Matrizen-) Produkt AB definiert als (21.2)
Kapitel 3: Erhaltungssätze
Syntax, Semantik, Spezifikation - Grundlagen der Informatik R. Hartwig Kapitel 3 / 1 Algebraische Hülle und Homomorphie A = [A, F ] sei  -Algebra. Eine.
Graphische Datenverarbeitung
 Sortigkeit oder Arität
8. Vektoren. 8. Vektoren Ortsvektor oder Polarvektor.
Folie 1 §8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein.
Einführung in die Informationsverarbeitung Teil Thaller Stunde V: Wege und warum man sie geht Graphen. Köln 14. Januar 2016.
Kapitel IV. Matrizen Inhalt:
§17 Produkte und Quotienten von Vektorräumen
§23 Basiswechsel und allgemeine lineare Gruppe
§ 25 Bilinearformen und spezielle Koordinaten
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
§11 Skalarprodukt. Euklidische Räume
Kapitel I. Vorspann zum Begriff Vektorraum
§19 Matrizen als lineare Abbildungen
Kapitel V. Determinanten
Kapitel II. Vom Raumbegriff zu algebraischen Strukturen
 Präsentation transkript:

§ 28 Multilineare und Alternierende Abbildungen Auf dem Wege zum Begriff der Determinante: (28.1) Definition: V und W seien wieder ein K-Vektorräume. Eine Abbildung heißt multilinear, wenn sie in jedem Argument linear ist, dh. wenn für feste v1, v2, ... , vj-1, vj+1, ... , vp aus V die Abbildung von V nach W stets linear ist. Man spricht stattdessen auch von p-linear, wenn die Anzahl p der Faktoren betont werden soll, so zum Beispiel von bilinear oder 2-linear, trilinear, 5-linear, etc. Der Begriff der Multilinearität gibt auch Sinn für Abbildungen

Kapitel V, § 28 Wichtiger Fall für die Einführung von Tensoren: (28.1) Beispiele: 1o Lineare Abbildungen sind 1-linear. 2o Bilinearformen, wie in § 25 studiert. Das Kreuzprodukt ist auch bilinear. Und auch die in § 26 eingeführte Determinante. 3o Hier eine Trilinearform: mit ελμν wie oben. 4o Es seien p Linearformen f1, f2, ... , fp auf V gegeben. Dann ist das Produkt stets p-linear.

Kapitel V, § 28 5o V habe die geordnete Basis b = (b1,b2, ... ,bn) . Dann hat jede p-lineare Abbildung die Form mit den eindeutig bestimmten So lassen sich p-lineare Abbildungen also definieren! 28.01.02  Eine p-lineare Abbildung lässt sich im Fall V = Kn auch verstehen als Abbildung von Kpxn nach W . Das ist (mit W = K) der Blickpunkt, der für die Determinanten eingenommen wird. Für die Determinante von (2,2)-Matrizen (§ 26) gilt aber zusätzlich: Sie ist alternierend! (28.3) Definition: Eine p-lineare Abbildung φ von Vp nach W ist alternierend (oder antisymmetrisch), wenn stets für Vektoren v1,v2, ... ,vn aus V und j < k .

Kapitel V, § 28 (28.4) Satz: K sei Körper der Charakteristik ungleich 2 . Dann sind die folgenden Aussagen äquivalent für eine p-lineare Abbildung 1o φ ist alternierend. 2o Für alle v1,v2, ... ,vp aus V ist φ(v1,v2, ... ,vp) = 0 , wenn vj = vk für ein Paar (j,k), j < k . 3o Für alle v1,v2, ... ,vp aus V und für j < k ist stets φ(v1,v2, ... , vj, ... ,vp) = φ(v1,v2, ... , vj + vk, ... ,vp) . 4o Für alle v1,v2, ... ,vp aus V und sk aus K mit sj = 0 ist stets φ(v1,v2, ... , vj, ... ,vp) = φ(v1,v2, ... , vj + skvk, ... ,vp) . 5o Für alle v1,v2, ... ,vp aus V mit rg(v1,v2, ... ,vp) < p ist φ(v1,v2, ... ,vp) = 0 . 6o Für alle v1,v2, ... ,vp aus V ist φ(v1,v2, ... ,vp) = 0 , wenn vj = vj+1 für ein j < p .

Kapitel V, § 28 7o Für alle v1,v2, ... ,vp aus V und j < p ist φ(v1,v2, ... ,vj, vj+1, ... ,vp) = – φ(v1,v2, ... ,vj+1, vj, ... ,vp) . 8o Für alle v1,v2, ... ,vp aus V und jede Permutation σ aus Sp gilt φ(v1,v2,... ,vp) = sgn(σ)φ(vσ(1),vσ(2), ... ,vσ(p)) .  28.01.02 Zusatz: Für allgemeine Körper sind 1o, 7o und 8o zueinander äquivalent und ebenso 2o, 3o, 4o, 5o, 6o . Ferner folgt 1o, 7o bzw. 8o aus 2o, 3o, 4o, 5o oder 6o . (28.5) Folgerung: Eine n-lineare und alternierende Abbildung auf einem Vektorraum der Dimension n mit Basis b ist von der Form Dabei ist φ0 = φ(b1,b2, ... ,bn) aus W ( char(K) nicht Null).