PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,

Slides:



Advertisements
Ähnliche Präsentationen
Geschichte ihrer Formulierung
Advertisements

Wie wir in „Mathematik für alle“ die Welt der Mathematik sehen
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Inhalt der Präsentation
- Erinnerung: Carnot Prozess - Entropiebetrachtung
Modellbasierte Software-Entwicklung eingebetteter Systeme
Schwingungsspektroskopie
nachhaltige Energieversorgung:
Nebenläufigkeit Teil I
Prof. Dr. Holger Schlingloff
Verbrennungsvorgang Beim Verbrennen wird Sauerstoff verbraucht und es entsteht Kohlenstoffdioxid und Wasserdampf. Kohlenstoffdioxid reagiert mit Kalkwasser,
Besetzungswahrscheinlichkeiten der Energiezustände:
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße (Energieübertrag.
Kraftwandler: Hebel Zweiseitiger Hebel Eine große Kraft nahe der Drehachse kann durch eine kleinere Kraft auf der anderen Hebelseite aufgehoben werden,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Von Molekülen zu Systemen
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Physikalische Chemie für Biochemiker
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Energieformen und Energiequellen
Die Hauptsätze der Thermodynamik
Kapitel 7: Stichworte Zustandsgröße, Zustandsgleichung
Einführung in die Physik für LAK
Heißluftballon Der aufsteigende Heißluftballon nutzt Wärme, um Hubarbeit zu verrichten Das Volumen des Ballons beträgt etwa 4000m3. Ein Teil der erwärmten.
kein Wärmekontakt zu Umgebung (Q=0),Temp. variabel W = ∆U
Tutorien: Seminarraum 411, Geb (PC-Turm, 4.OG)
4. Reale Gase 5. Erster Hauptsatz der Thermodynamik 6. Thermochemie
Carnot-Zyklus Stirling-Motor
Wdh. Letzte Stunde 1.Hauptsatz
Ein Vortrag von Verena Pfeifer
Ideale Lösungen z.B. Forsterit - Fayalit MgSi0.5O2 FeSi0.5O2 ??? ???
Themen der Vorlesung “Physikalische Chemie” im Pharmaziestudium
2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik
Die Entropie Maßzahl für die Wahrscheinlichkeit der Verteilung mikroskopischer Zustände.
Kapitel 1: Grundbegriffe der Thermodynamik
Kapitel 3: 1. Hauptsatz der Thermo-dynamik und der Energiebegriff
Kapitel 1: Grundbegriffe der Thermodynamik
Boltzmannscher Exponentialsatz
Onsagersche Gleichung. Energetische Beziehungen
Kapitel 3: 1. Hauptsatz der Thermo-dynamik und der Energiebegriff
2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik
7. Zweiter Hauptsatz der Thermodynamik Carnot-Maschine Wirkungsgrad
Hauptsätze Wärmelehre
Energieeffizienz bei Kraftwerken mit fossilen Energieträgern
Stirling-Motor.
Kapitel 3.7: Berechnung von Änderun-gen der Enthalpie und inneren Energie Prof. Dr.-Ing. Ch. Franke.
Kapitel 3.5 Der 1. Hauptsatz für stationäre Fließprozesse
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Prüfung auf Serialisierbarkeit (3)
Kapitel 3: 1. Hauptsatz der Thermo-dynamik und der Energiebegriff
Kapitel 5: Zustandsgleichung und Zustandsänderung idealer Gase
Maschinendynamik Hinweise & Videos zu den MATALB – Beispielen Wie löst man die Aufgaben der Arbeitsblätter mit MATLAB? Institut für Technische und Numerische.
Gottfried Vossen 5. Auflage 2008 Datenmodelle, Datenbanksprachen und Datenbankmanagementsysteme Kapitel 23: Verteilte Transaktionsverarbeitung.
3 Die chemische Reaktion 3.5 Das chemische Gleichgewicht
Dampfkraftprozesse 4 Teilsysteme im Kraftwerk:
Joule-Thomson-Effekt
Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen | Prof. Dr.-Ing. E. Abele / Prof. Dr.-Ing. J. Metternich 5-Achs-Bearbeitungszentrum.
Fachdidaktische Übungen Stefan Heusler. Kühlschrank Sehr gute Materialien zum Thema Thermodynamik finden Sie auf der Seite
Verfahrens- und Umwelttechnik Prof. Dr. Freudenberger
Thema der Arbeit - hier steht das Thema der Arbeit
Lernziele SW 9: Kreisprozesse
Tutorium der Vorlesung Lebensmittelphysik Thermodynamik
 Präsentation transkript:

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Verteilung über Energieniveaus ändert sich nicht, aber die Zahl der Zustände gleicher Energie vergrößert sich proportional zu V N ! Isotherme Expansion eines idealen Gases

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Isotherme Expansion eines idealen Gases Verrichtete Arbeit: 1.Hauptsatz:

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Isotherme Expansion eines idealen Gases Gesamte am System verrichtete Arbeit: Gesamte Entropieänderung: Zugeführte Wärmemenge

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Isotherme Expansion eines idealen Gases reversibel irreversibel

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Reversible adiabatische Expansion eines idealen Gases

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Reversible adiabatische Expansion eines idealen Gases Polytrope (hier isentrope) Zustandsänderung

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Carnot-Zyklus T2T2 T1T1

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Carnot-Zyklus S1S1 S2S2 T1T1 T2T Wirkungsgrad

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Helmholtz Freie Energie Betrachte zwei Makrozustände eines Systems, welche durch unterschiedliche Ensemble von Mikrozuständen realisiert werden Was sind die relativen Wahrscheinlichkeiten, das System in einem der beiden Makrozustände zu finden? E

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Helmholtz Freie Energie

PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein, Helmholtz Freie Energie