Einführung in die Ingenieurgeophysik SS 2009

Slides:



Advertisements
Ähnliche Präsentationen
Geophysik Faszination Erde
Advertisements

Alltagsphänomen: Regenbogen
Lehrstuhl Baugrund-Grundbau GHJ Geotechnik-Umwelttechnik Universität Dortmund Karlsruhe, Heilbronn Optimierung von Abbruch und Verwertung Prof. Dr.-Ing.
Die Erde als Planet  Tilmann Althaus Redaktion „Sterne und Weltraum“
Bohrverfahren Bohrlochmessungen
4. Geometrische Optik Bildübertragung  Informationsübertragung mit Licht .Lichtquellen: Glühlampe (Wärmestrahlung, Sonne), Leuchtstoffröhre, Bogenlampe.
Optische Eigenschaften von Werkstoffen
Interferenztheorien Dynamische Beugungstheorie
Ideale Ausbreitung im Vakuum
Magnetotellurische und elektrische Untersuchungen in der Bajkalzone
Universität zu Köln Historisch-Kulturwissenschaftliche Informationsverarbeitung Softwaretechnologie II (Teil 2): Simulation und 3D Programmierung Prof.
Vorlesungsunterlagen, Folien, Übungen unter
Bild von Totalreflexionsversuch
Druck- & Beschleunigungssensoren
Messprinzip Anwendung
ein Überblick Vortrag zur Vorlesung „Geothermie“ im SoSe 2009
Das Hygrometer – Arten und Funktionsweise
Physik Prof. Dr. Manfred Koch
Einführung Geoelektrik
2. Reflexion und Brechung
Geophysik online – Das Fachinformationssystem Geophysik
Erdbebenlokalisierung
Das Wenchuan Erdbeben in China
Wellenausbreitung Wellenphänomene Schichten der Erdatmosphäre
Medienorientierung Medienorientierung vom 30. Mai BegrüssungFelix Wittwer, Präsident Stiftung Mammutmuseum 2. Das Mammutbaby von Niederweningen.
Abschlussvortrag zur Studienarbeit
Inhalt der Vorlesung Einführung Seismische Quellen und Wellengleichung
Wasser in 3D Die Modellierung und realitätsnahe Echtzeitberechnung von Wasser unter Zuhilfenahme der Grafik Engine OGRE 3D Präsentation von Paul van Hemmen.
Altlastenerkundung mit geophysikalischen Methoden
B.-Eng. Christian Petri. Abb. 1 Erdfall unterhalb einer Straße (Quelle: Genske-2011) B.-Eng. Christian Petri.
Wetterbedingungen während einer Autofahrt
Wellen zeigen Teilchen Eigenschaft
Dielektrizitätszahl, Brechungsindex und Ausbreitungsgeschwindigkeit
Inhalt Brechungsindex und relative Permittivität (ehemals „Dielekrizitätszahl“) Brechungsindex und Ausbreitungsgeschwindigkeit Das Snellius-Brechungsgesetz.
Instrumentenpraktikum
Reflexion, Brechung und Totalreflexion
Geometrische Optik Für Studierende der Pharmazie Universität Graz
Geophysik 138 Allgemeine Geophysik (8) Aufbau der Erde.
Snellius-Brechungsgesetz Die Apertur
Qualitätsmanagement in kommunalen Verkehrsplanungsprozessen
Weg-, Winkel-, Positionsmessung
Durch Brechung Warum ist ein Bleistift, der ins Wasser eingetaucht ist, geknickt? Warum erscheint ein Körper im Wasser verkürzt? Warum ist ein Gegenstand.
Harmonischer Oszillator Pendel Energieanteile einer Schwingung.
Eine kleine Einführung für Studierende der Psychologie
Ein Überblick über verschiedene Verfahren
Beleuchtungsmodelle, Schattierungsmodelle
DAS LICHT.
Erdbebenwellen Erdbeben bestehen aus verschiedenen Wellentypen, die sich mit unterschiedlicher Geschwindigkeit fortbewegen.

Zusammensetzung AG 5 „Erd- und Grundbau“ bis Ende 2006
» Erklärung und Beispiele
Die Welt der Shader Universität zu Köln WS 14/15 Softwaretechnologie II (Teil 1) Prof. Dr. Manfred Thaller Referent: Lukas Kley Fortgeschrittene Techniken.

Modul Angewandte Geophysik
Lichtwellenleiter Lernziele: Bauformen von LWL kennen.
Bodenmechanik und Grundbau II (SS 2010)
Angewandte GeophysikEinleitung Folie 1 Methoden der Angewandten Geophysik Vorlesung über die Methoden der angewandten Geophysik für Studenten des Bachelor-Studiengangs.
Hochdynamische Belastung einer Basisabdichtung in stark verkarsteten Massenkalken der Schwäbischen Alb Dipl.-Geol. Friederike Meyer Dipl.-Ing. Claas Meier.
„Es ist unmöglich, das Licht richtig zu
Wellencharakter und Teilchencharakter des Lichts.
Möglichkeit zur Schadenseingrenzung mittels Ultraschallecho-Untersuchungen am Beispiel einer Spannbetonbrücke und einer Tiefgaragenbodenplatte sowie Bestimmung.
Konstruktion des Bildes
Das Hammerschlag-Experiment
Das Hammerschlag-Experiment
Christian Zepp & Katharina Rohr
Refraktionsseismik Zweischichtfall Dreischichtfall Geneigte Schicht
Geometrische Optik.
Beugung, Reflexion und Brechung von Wellen
Tutorium Physik 2. Optik SS 18 | 2.Semester | BSc. Oec. und BSc. CH
 Präsentation transkript:

Einführung in die Ingenieurgeophysik SS 2009 FG Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch „Ausgewählte Verfahren in der Baugrunduntersuchung“ Referenten: Sebastian Weichelt [Master Bauingenieurwesen, Matr.-Nr.: 25201091] Florian Herbert [Master Umweltingenieurwesen, Matr.-Nr.: 29100981] 22.10.2009

Gliederung 1. Einleitung 2. Verfahrensübersicht Erkundungsverfahren 2.1 Bohrlochverfahren 2.2 Oberflächenverfahren 3. Seismik 4. Bodenradar / Georadar 5. Zusammenfassung 22.10.2009

? ? 1. Einleitung Wozu Baugrunduntersuchungen? Quelle: historischer Bergbau Suhl Wozu Baugrunduntersuchungen? Quelle: Kempfert/Raithel Welche technischen Möglichkeiten? 22.10.2009 3

2. Verfahrensübersicht Erkundungsverfahren 2.1 Bohrlochverfahren Mögliche Erkundungsverfahren Optischer Bohrlochscanner Akustischer Bohrlochscanner Hohlraumvermessung Kamerabefahrung Gleitdeformeter / Gleitmikrometer Extensometer Inklinometer Trivec Piezometer Radartomografie … Aufgrund der geringen praktischen Anwendungen wird auf diese Verfahren im weiteren nicht näher eingegangen 22.10.2009 4

2. Verfahrensübersicht Erkundungsverfahren 2.2 Oberflächenverfahren 22.10.2009 5

3. Seismik Verfahrensgrundlagen beruht auf der Ausbreitung und Erfassung von Wellen im Untergrund Entscheidender Parameter für Wellenausbreitung = materialspezifische Wellengeschwindigkeit Beeinflussung der Ausbreitung von seismischen Wellen durch Reflexion, Refraktion, Brechung, Beugung, Absorption und Streuung Signalerzeugung z.B. durch Sprengstoff, Hammerschläge, Vibratoren, Implosionen, … Signalaufzeichnung z.B. mit Geophonen, Beschleunigungsaufnehmern, Hydrophonen, … Messgeometrie erfolgt meist entlang von Profillinien 2-dim. auf der Erdoberfläche Messgenauigkeit z.B. abhängig von Bodenbeschaffenheit, Abstrahlcharakteristik der Quelle, Messgeometrie, „Störgeräusche“, … Mögliche Verfahren: Reflexions-, Refraktions-, Bohrloch-, Oberflächenwellenseismik, … Quelle: BAW; BU Weimar Wellengeschwindigkeiten werden durch Kenngrößen wie Dichte, dynamische Module, Porosität und Ä. bestimmt Messgeometrie: Spezialmessung auch in Bohrungen; für räumliche Erkundung des Untergrundes wird eine flächige Messanordnung erforderlich  für 3D-Einblick 22.10.2009 6

3. Seismik Reflexionsseismik Betrachtung der an Trennschichten reflektierten Wellen Messung von Energie und Laufzeit α – reflektierte Wellenstrahlen = α – einfallende Wellenstrahlen Reflexion, wenn Impedanzänderungen Quelle: GGU mbH, 2003 Es muß ein ausreichender Impedanzkontrast vorliegen, damit Reflexionen erkannt werden können. Ein Seismogramm besteht aus einer Aneinanderreihung von einzelnen Seismogrammspuren. Die Wellengeschwindigkeiten können u.a. aus einer speziellen Meßgeometrie bestimmt werden. Ein Untergrundpunkt (CDP common depth point) wird dabei mit einer immer weiter auseinandergezogenen Sender-Empfänger-Anordnung betrachtet (untere Abbildung).  Aus dem Abstand von Signalquelle und Geophon xi, den Ankunftszeiten ti und der Lotzeit t0 wird die Geschwindigkeit des Signalimpulses bestimmt: v = xi / (t²i - t²0) Reflexionsseismik: Messung und Interpretation der Energie und Laufzeiten von seismischen Wellen, die an Trennschichten im Untergrund reflektiert werden. Reflexionen treten auf, wenn sich die Impedanz im Untergrund ändert. Registrierung der Signale mit Geophonen an Erdoberfläche Darstellung und Auswertung in Seismogrammen 22.10.2009 Quelle: sachsen-anhalt.de 7

3. Seismik Refraktionsseismik Seismogramm: 22.10.2009 8 beruht auf Auswertung von gebrochenen Wellen wenn v2 > v1  entsteht refraktierte Welle (Kopfwelle) Verlauf der Kopfwelle über die Grenzschicht mit v2 Energieabstrahlung nach oben  Regist. durch Geophone Eintreten der Kopfwelle erst ab xe (kritische Entfernung) Grenzwinkel der Totalreflexion (α1) über Snelliussches Brechungsgesetz: (kritische Winkel der Totalreflexion) Seismogramm: Ersteinsätze  direkte langsamen Impulse ab Knickpunktentfernung (xk) Registrierung der refraktierten Wellen  Wellen in der unteren Schicht laufen schneller Steigung der Geraden = Wellengeschwindigkeiten (v1, v2) Refraktionsseismik: Messung und Interpretation der Laufzeiten von seismischen Wellen, die an Trennschichten im Untergrund gebrochen (refraktiert) werden und sich dann als Kopfwelle entlang dieser Trennschichten fortpflanzen. Die Refraktionsseismik beruht auf der Auswertung von gebrochenen Wellen, die von einer Quelle ausgesandt in einem kritischen Winkel auf eine Grenzfläche zweier Gesteinsschichten auftreffen, an der Grenzfläche entlanglaufen und wieder zur Erdoberfläche gelangen. Aus den registrierten Laufzeitkurven können Aussagen zur Tiefenlage von Schichtgrenzen abgeleitet werden. Die Kopfwelle ist erst ab der kritischen Entfernung xe zu beobachten. Der kritische Winkel a1 , auch Grenzwinkel der Totalreflexion genannt, mit der die Welle auf die untere Schicht einfällt, wird nach Snellius aus Die Steigungen der Geraden durch die Einsätze von direkten und refraktierten Wellen liefern deren Geschwindigkeiten v1 und v2 . Damit und mit der Knickpunktsentfernung xk oder dem Achsenabschnitt ti läßt sich die Tiefe d berechnen: Tiefengenauigkeit abhängig vom Geschwindigkeitskontrast an Schichtgrenzen und der Materialinhomogenität Quelle: GGU mbH, 2003 22.10.2009 8

3. Seismik Praxisbeispiele: 1. Ermittlung von Felslinie und Felshärte im Zuge eines Brückenneubaus 22.10.2009 9

3. Seismik - Praxisbeispiele 1. Ermittlung von Felslinie und Felshärte im Zuge eines Brückenneubaus erste lokale Erkundungsbohrungen ergaben unterschiedlich verwitterten Gneis in versch. Tiefenlagen geplante Bohrpfahlgründung benötigt flächendeckende Tiefenlage des Felshorizontes Tiefenlage Felshorizont und Felshärte über Refraktionstomografie und Geoelektrik seismische Geschwindigkeit (vp, vs)  abhängig von Schichthärte (Refraktionsseismik) elektrische Leitfähigkeitsverteilung (Geoelektrik)  keine Aussage über Schichtung und Felslinie Dichteinformationen (Bohrkernanalyse) 2D – Schnitt (über v und ρ)  Verteilung dynamisches E-Modul Mit Kalibrierwerten des stat. E-Modul aus Kernbohrung  2D – Verteilung stat. E-Modul Geoelektrik keine Aussage über Schichtung und Felslinie (oberflächenahe, anthroprogene Einflüsse) 23.10.2009 10 Quelle: FGSV W1, 2007 Verteilung des statischen E-Moduls, Verlauf Felslinie und Verteilung der Felshärten

4. Bodenradar / Georadar Anwendungsgebiete für Untergrund/Baugrund: Quelle: GGU mbH, 2003 22.10.2009 11

4. Bodenradar / Georadar Anwendungsgebiete für Bauwerke: 22.10.2009 12 Quelle: GGU mbH, 2003 22.10.2009 12

4. Bodenradar / Georadar Messverfahren: aktive Aussendung elektro-magnetischer Wellen (Impulse) mit einer Frequenz von 20 MHz bis 2 GHz Radarsignal wird in Medium gestreut, reflektiert, gebeugt und absorbiert Radarreichweite (abhängig von Leitfähigkeit σ) Messung der Signalamplitude und der Laufzeit Tiefe d = ½ * t * v Quelle: GGU mbH, 2003 22.10.2009 13

4. Bodenradar / Georadar Vom Radargramm zum Tiefenmodell: A: Primärsignal B, C, D: Reflexionen an Schichtgrenzen und Objekten E: Diffraktion an Einzelobjekten Laufzeitmessung bei bekannter Wellenge-schwindigkeit Berechnung der Tiefenachse bei inhomogenem Boden Tiefenachse nur Näherung Genauigkeit Tiefenachse +/- 10 % bei normalen Bed. Quelle: GGU mbH, 2003 22.10.2009 14

4. Bodenradar / Georadar Einflussfaktoren auf Messung: Quelle: FGSV W1, 2007 Leitfähigkeit σ des Mediums → Absorption der Radarsignale hohe Leitfähigkeit σ (feuchte bindige Böden) → geringe Radarreichweite Reflexion abhängig von Materialkontrast → maximal bei Metallflächen Signalstreuung abhängig von Homogenität des Mediums (künstliche Auffüllungen) mit zunehmender Entfernung geringere Signalstärke niederfrequente Signale → höhere Radarreichweite hochfrequente Signale → höhere Auflösung indirektes Verfahren → Fehlinterpretationen durch Messpersonal 22.10.2009 15

4. Bodenradar / Georadar Reichweiten des Georadars im Baugrund (Erfahrungswerte): Bodenmaterial Reichweite in m - min. max. trockene Kiese und Sande 5,0 10,0 gesättigte Kiese und Sande 2,0 schluffige, feuchte Kiese und Sande 3,0 bindiger, sehr trockener Boden bindiger, feuchter Boden 1,0 Gestein > 10,0 kompakter Dolomit, Marmor > 20,0 Quelle: GGU mbH, 2003 22.10.2009 16

4. Bodenradar / Georadar Praxisbeispiele: 1. Baugrunderkundung nach Hohlräumen in Autobahntrasse 2. Erkundung Baugrund nach Fundamentresten 22.10.2009 17

4. Bodenradar / Georadar Bsp. 1: Baugrunderkundung nach Hohlräumen in Autobahntrasse Messfahrzeug Radargramm Nieder- und Mittelfrequenzantenne (100 MHz – 500 MHz) Messlinienabstände 0,4 – 1,0 m → flächendeckende Erkundung detektierte Verdachtsstellen → direkte Erkundungsverfahren (Schurf) Kostengrößenordnung für Trassen und Baugruben: 0,5 €/m² bis 2 €/m² 22.10.2009 18

4. Bodenradar / Georadar Bsp. 2: Erkundung Baugrund nach Fundamentresten Aufnahme von Radargrammen Signalamplitudendarstellung innerhalb der Messfläche für eine bestimmte Laufzeit Ergebnis: Radarzeitscheiben für verschiedene Tiefenlagen die roten und schwarzen Schattierungen zeigen hohe Signalamplituden Fundamentreste werden erkannt Quelle: GGU mbH, 2003 23.10.2009 19

5. Zusammenfassung Seismik: einfaches Messprinzip flächendeckende (und dreidimensionale) Untersuchungen und Darstellungen möglich Möglichkeit zur Verfahrenskombination Ergebnisse abhängig von richtiger Messinterpretation Bodenradar / Georadar: oberflächennahe Erkundung des Baugrundes Vorabuntersuchung zur Festlegung von direkten Erkundungsverfahren Messergebnisse stark abhängig von Homogenität und Leitfähigkeit des Mediums, der gewählten Wellenfrequenz und der Tiefe des Untersuchungshorizonts kostengünstiges Verfahren 22.10.2009 20

Einführung in die Ingenieurgeophysik SS 2009 Quellenangaben FGSV W1, 2007, Forschungsgesellschaft für Straßen- und Verkehrswesen, Arbeitsgruppe Erd- und Grundbau, Hinweise zur Anwendung geotechnischer und geophysikalischer Messverfahren im Straßenbau, Köln GGU Gesellschaft für Geophysikalische Untersuchungen mbH, http://www.ggukarlsruhe.de, letzter Zugriff: 13.10.2009, Karlsruhe Historischer Bergbau Suhl, http://www.eisenstrasse.de/Lagerstaetten.htm Kempfert/Raithel; Bodenmechanik und Grundbau, Bd. 1, Kap.4 22.10.2009 21 21