Mehrfache und polynomiale Regression Jonathan Harrington
^ Einfache Regression ^ Mehrfache Regression In diesem Fall: 2 Regressoren (x1, x2) , 2 Neigungen (b1, b2), ein Intercept, k und eine Ebene im 3D-Raum
Mehrfache Regression Es können auch mehrere Regressoren sein… ^ Eine Hyper-Ebene in einem n-dimensionalen Raum n verschiedene Neigungen, ein Intercept
Einige Daten ydata = read.table(file.path(pfadu, "ydata.txt")) names(ydata) Zungendorsum Untere Lippe [1] "F2" "DORSY" "DORSX" "LIPY" "LIPX" [y] Vokale, alle Werte zum zeitlichen Mittelpunkt DORSX, DORSY (horizontale und vertikale Position des Zungendorsums) LIPX, LIPY (horizontale Verlagerung und vertikale Position der Unterlippe)
Ein mehrfaches Regressionsmodell F2 = b1DORSX +b2DORSY + b3LIPX + b4 LIPY + k ^ hat die Bedeutung F2 = ein Gewicht Mal die horizontale Position der Zunge + ein anderes Gewicht Mal die vertikale Position der Zunge + …. + ein Intercept ^ Mehrfache Regression in R Festlegung von b1, b2, b3, b4, k Sind alle diese Parameter notwendig? Wenn nicht, welches Parameter oder Parameterkombination hat die deutlichste lineare Beziehung zu F2?
pairs(ydata) hoch tief hinten* vorne oben unten hinten vorne * Richtung Glottis
F2 = b1DORSX +b2DORSY + b3LIPX + b4 LIPY + k ^ regm = lm(F2 ~ DORSX+DORSY+LIPX+LIPY, data=ydata) Koeffiziente coef(regm)
summary(regm) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1355.05 822.63 1.647 0.113 DORSX -38.33 157.21 -0.244 0.810 DORSY 63.08 254.27 0.248 0.806 LIPX -67.36 110.90 -0.607 0.550 LIPY -164.08 205.04 -0.800 0.432 Residual standard error: 83 on 23 degrees of freedom Multiple R-Squared: 0.3939, Adjusted R-squared: 0.2884 F-statistic: 3.736 on 4 and 23 DF, p-value: 0.01747 F2 kann mit einer multidimensionalen Regression aus diesen artikulatorischen Parametern modelliert werden: Adjusted R2 = 0.29, F[4, 23] = 3.7, p < 0.05. (In mehrfacher Regression Adjusted R2 nehmen, weil ajdusted R2 für die Anzahl der Regressoren kompensiert)
Modell-Prüfung durch AIC (Akaike's Information Criterion) Mit der stepAIC() Funktion in library(MASS) wird geprüft, ob für die Regression wirklich alle (in diesem Fall 4) Regressoren benötigt werden. Je kleiner AIC, umso nützlicher die Kombination für die Regression (umso höher adjusted R2) library(MASS) stepAIC(regm)
Start: AIC= 251.95 F2 ~ DORSX + DORSY + LIPX + LIPY Df Sum of Sq RSS AIC - DORSX 1 410 158861 250 - DORSY 1 424 158875 250 - LIPX 1 2541 160993 250 - LIPY 1 4412 162863 251 <none> 158451 252 sortiert nach AIC. Dies ist der AIC-Wert, wenn aus diesem Modell DORSX weggelassen wäre. Daher wird im nächsten Modell DORSX weggelassen. Vor allem ist dieser AIC Wert weniger als AIC mit allen Parametern (= 251.95).
Step: AIC= 250.02 F2 ~ LIPX + LIPY + DORSY Df Sum of Sq RSS AIC - DORSY 1 1311 160172 248 - LIPY 1 4241 163102 249 <none> 158861 250 - LIPX 1 16377 175238 251 AIC ist am kleinsten, wenn aus diesem Modell DORSY weggelassen wird. Und dieser Wert ohne DORSY ist kleiner als derjenige mit LIPX+LIPY+DORSY zusammen. Daher wird DORSY weggelassen…
Step: AIC= 248.25 F2 ~ LIPX + LIPY Df Sum of Sq RSS AIC <none> 160172 248 - LIPX 1 25225 185397 250 - LIPY 1 50955 211127 254 Wenn wir entweder LIPX oder LIPY weggelassen, dann wird AIC höher im Vergleich zu AIC mit beiden Parametern zusammen. Daher bleiben wir bei F2 ~ LIPX + LIPY
Dieses Modell F2 ~ LIPX + LIPY müsste auch den höchsten adjusted R2 haben. Prüfen, zB: lip.lm = lm(F2 ~ LIPX+ LIPY, data= ydata) summary(regm) summary(lip.lm) Adjusted R-squared: 0.3383 Adjusted R-squared: 0.2884 Also wird die Variation in F2 in [y] am meisten durch die horizontale und vertikale Position der Unterlippe erklärt.
Polynomiale Regression ein Regressor ein Koeffizient ^ ein Regressor, 2 Koeffiziente ^ bestimmt die Krümmung; b2 ist näher an 0 b2 ist positiv b2 ist negativ
ein Regressor, n Koeffiziente ^ In allen Fällen handelt es sich um Abbildung/Beziehungen im 2D-Raum (da wir mit einem Regressor zu tun haben).
epg = read.table(paste(pfadu, "epg.txt", sep="/")) plot(F2 ~ COG, data = epg)
^ regp = lm(F2 ~ COG + I(COG^2), data = epg) k = coef(regp) (Intercept) COG I(COG^2) -294.3732 2047.8403 -393.5154 ^ plot(F2 ~ COG, data = epg) Die Parabel überlagern curve(k[1] + k[2]*x + k[3]*x^2, add=T)
summary(regp) Beide Komponente, COG und COG2 der Parabel scheinen notwendig zu sein, um die F2-COG Beziehungen zu modellieren. Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -294.37 139.95 -2.103 0.0415 * COG 2047.84 192.83 10.620 1.81e-13 *** I(COG^2) -393.52 54.17 -7.264 6.10e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 202.1 on 42 degrees of freedom Multiple R-Squared: 0.9092, Adjusted R-squared: 0.9049 F-statistic: 210.4 on 2 and 42 DF, p-value: < 2.2e-16
mit stepAIC() kann wieder festgestellt werden, ob wir den COG2 Parameter wirklich benötigen: stepAIC(regp) Scheinbar ja (da AIC höher wird, wenn entweder COG oder COG2 aus dem Modell weggelassen werden). Start: AIC= 480.69 F2 ~ COG + I(COG^2) Df Sum of Sq RSS AIC <none> 1715550 481 - I(COG^2) 1 2155469 3871019 515 - COG 1 4606873 6322423 537 Call: lm(formula = F2 ~ COG + I(COG^2)) Coefficients: (Intercept) COG I(COG^2) -294.4 2047.8 -393.5