Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/041 Jens Zimmermann Max-Planck-Institut für Physik, München MPI.

Slides:



Advertisements
Ähnliche Präsentationen
Kerndichteschätzung Nearest-Neighbour-Verfahren
Advertisements

Aufgabenbesprechung Programming Contest. Order 7 Bo Pat Jean Kevin Claude William Marybeth 6 Jim Ben Zoe Joey Frederick Annabelle 0 SET 1 Bo Jean Claude.
Art der Arbeit (Projekt-/Studien-/Diplomarbeit/
Kapitel 4: Schule In this chapter you will: Talk about school
Ich beschreibe mein Haus!
Write two sentences about each person based on the information given.
Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Towards Automatic Composition of Processes based on Semantic.
Felder (Arrays) und Zeiger (Pointers) - Teil II Zeichen, Texte, String Matching; Mehrdimensionale Felder; kürzeste Wege.
4th Symposium on Lidar Atmospheric Applications
DOAS-Gruppe: Institut für Umweltphysik Universität Bremen Promotionsvortrag, 28. April 2006,
+ Arbeitsbericht mit Blick in die Zukunft M. Pernicka
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
Qualitätssicherung von Software Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FIRST.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
Konjugier,,sein”! ichwir du ihr er, sie,essie, Sie.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
Kapitel 4 Alles für die Schule Lernziel: Formation of Plural.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
Was glaubst du… Was ist ein gutes Geschenk für deine Gastschwester/ Gastbruder? Ein Buch? Ein Radiowecker? Ein Hut? Ohrringe? Eine DVD?
Synchronization: Multiversion Concurrency Control
SiPass standalone.
FTS usage at GridKa Forschungszentrum Karlsruhe GmbH
The perfect tense Vital for a good grade!!. There are 2 parts to the perfect tense 1)The correct part of haben (or sein) 2) + the past participle.
The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.
Task 1.2: Fully Coupled Hydrogeophysical Inversion of Salt-Tracer Experiments RECORD PhD Retreat 9 th -10 th June 2009 Davina Pollock, Center for Applied.
3rd Review, Vienna, 16th of April 1999 SIT-MOON ESPRIT Project Nr Siemens AG Österreich Robotiker Technische Universität Wien Politecnico di Milano.
Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC B. Epp 1, V.M. Ghete 2, E. Kneringer 1, D. Kuhn 1, A. Nairz 3 1 Institut für Experimentalphysik,
Physik multimedial Lehr- und Lernmodule für das Studium der Physik als Nebenfach Julika Mimkes: Links to e-learning content for.
Ordering Food A Guide. Im Restaurant An actual restaurant is the chance to use more formal ordering. “Ich hätte gern eine Pizza.” “Ich möchte eine Cola.”
Es gibt there is (singular) or there are (plural)
How does the Summer Party of the LMU work? - Organizations and Networks -
Probesystem Gym 4 Prüfungen pro Schuljahr, in der 2. Klasse 4 ½ Prüfungen. Jeweils ganze Lektion, keine Fragemöglichkeit am Anfang der Prüfungslektion.
Deepening Topics QM in Clinical studies.
Lecture slides for Training Curriculum TIA Portal
COST working group 2 – EMM Erreichbarkeitsatlas
EUROPÄISCHE GEMEINSCHAFT Europäischer Sozialfonds EUROPÄISCHE GEMEINSCHAFT Europäischer Fonds für Regionale Entwicklung Workpackage 5 – guidelines Tasks.
Memorisation techniques
Environment problems The problems - The problem of waste  too much trash -People use too much cars -Oil platform accidents -Exhaust gas pollution -Deforestation.
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Timing RPC for prompt gamma.
Our next PLD session is focused on turning theory into practice by learning methodologies that will scaffold learning for second language acquisition.
Standort assurance for companies Industrie- und Handelskammer Lippe zu Detmold 01. Juni 2010 Seite 1 What does the IHK do against the crisis?
Essay structure Example: Die fetten Jahre sind vorbei: Was passiert auf der Almhütte? Welche Bedeutung hat sie für jede der vier Personen? Intro: One or.
LLP DE-COMENIUS-CMP Dieses Projekt wurde mit Unterstützung der Europäischen Kommission finanziert. Die Verantwortung für den Inhalt dieser.
Learning Linear Ordering Problems for Better Translation Roy Tromble, Google Pittsburgh Jason Eisner, Johns Hopkins August 7, 2009.
Agenda Eröffnung und Begrüßung durch Mag.a Elisabeth Rosenberger
MUNICH OFFICES TAKE A LOOK Workshop
Freizeit Thema 5 Kapitel 1 (1)
Du bist am dicksten und am dümmsten.
Deutsch 1 Die Familie Frau Spampinato
Process and Impact of Re-Inspection in NRW
associated to Stealth CMEs
Synonyms are two or more words belonging to the same part of speech and possessing one or more identical or nearly identical denotational meanings, interchangeable.
Das Taschentuch-Spiel
Senseo Wir erweitern die statischen Informationen mit Hilfe von Laufzeitinformationen. Einbindung in IDE resp. JDT.
THE PERFECT TENSE IN GERMAN
Ferrite Material Modeling (1) : Kicker principle
The new online recognition process
Introduction to Physics I
Institut für Experimentelle
Avalanche-, Debris Flow- and Mudslide RADAR
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
CSL211 Computer Architecture
The Conversational Past
The Conversational Past
Integrating Knowledge Discovery into Knowledge Management
Practical Exercises and Theory
School supplies.
- moodle – a internet based learning platform
Zhunussova G., AA 81. Linguistic communication, i.e. the use of language, is characteristically vocal and verbal behaviour, involving the use of discrete.
 Präsentation transkript:

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/041 Jens Zimmermann Max-Planck-Institut für Physik, München MPI für extraterrestrische Physik, München Forschungszentrum Jülich GmbH Statistical Learning? Three Classes of Learning Methods Applications in Physics Analysis Training the Learning Methods Examples Conclusion Statistical Learning in Astrophysics

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/042 Some Events x10 # formulas # slides x10 # formulas# slides Experimentalists Theorists

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/043 First Analysis x10 # formulas x10 # slides Experimentalists Theorists x10 # formulas # slides x10

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/044 Decision Trees x10 # formulas #formulas < 20 exp #formulas > 60th x10 # slides 20 < #formulas < 60? #slides > 40exp #slides < 40th #slides < 40#slides > 40 expth #formulas < 20 #formulas > 60 rest exp th all events subset 20 < #formulas < 60

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/045 Local Density Estimators Search for similar events that are already classified and count the members of the two classes. (e.g. k-Nearest-Neighbour) x10 # formulas # slides x10 # formulas # slides x10

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/046 Methods Based on Linear Separation Divide the input space into regions separated by one or more hyperplanes. Extrapolation is done! x10 # formulas # slides x10 # formulas # slides x10

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/047 Neural Networks x # formulas# slides 0 1 Construct NN with two separating hyperplanes:Train NN with two hidden neurons (gradient descent):

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/048 NN Training 8 hidden neurons = 8 separating lines Test-Error Train-Error signal background Training Epochs

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/049 Training of Statistical Learning Methods Statistical Learning Method: From N examplesinfer a rule Important: Generalisation vs. Overtraining Without noise and separable by complicated boundary? x10 # formulas # slides x10 Easily separable but with noise? Too high degree of polynomial results in interpolation but too low degree means bad approximation

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0410 Applications in Physics Analysis Classification Online „Trigger“ H1L2NNCharged Current Classification Offline „Purification“ Gamma vs. Hadron MAGIC Regression ~300µm ~10µm XEUSX-ray CCD

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0411 Features Choose raw quantities PCA FFT SymmetrieFit

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0412 Regression of the Incident Position of X-ray Photons  of reconstruction in µm: Neural Networks 3.6classical methods k-Nearest-Neighbour 3.7 ETA 3.9 CCOM 4.0 XEUS ~300µm ~10µm electron potential transfer direction

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0413 Pileup Recognition – Setup Pileup vs. Single photon classical algorithm „XMM“ ? photon efficiency [%] pileup rejection [%] 99/52 99/67

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0414 MAGIC - Gamma/Hadron Separation Observation Mkn SuperCuts 39.0  SuperCuts + Neural Network 46.8  

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0415 Conclusion Three classes of statistical learning methods Decision Trees (Bagging) Local Density Estimators Linear Separation Many applications in current astrophysics experiments and analysis Compared to classical methods usually at least small improvements C4.5 CART Random Forest Maximum Likelihood k-Nearest-Neighbour Linear Discriminant Analysis Neural Networks Support Vector Machines

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0416 Theory of Communication: Minimum Description Length Principle Bayes Hypothesis H and Data D Our hypothesis should have the maximum probability given the data: Shannon MDLP Rissanen 18 th century

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0417 Statistical Learning Theory: Structural Risk Minimization We have N training events with input x i and correct output y i empirical riskactual risk Relationship is uniform convergence: h 1 <h 2 <h3h3 Create nested subsets of function spaces with rising complexity Upper bound for the actual risk (Vapnik): h : VC Dimension of learning method (complexity) 1996

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0418 Support Vector Machines Separating hyperplane with maximum distance to each datapoint: Maximum margin classifier Found by setting up condition for correct classfication and minimizing which leads to the Lagrangian Necessary condition for a minimum is So the output becomes Only linear separation? The mapping to feature space is hidden in a kernel No! Replace dot products: KKT: only SV have Non-separable case:

Jens Zimmermann, Forschungszentrum Jülich, Astroteilchenschule 10/0419 Finally x10 # formulas # slides x10 Include Statistical Learning Theory: ~25 formulas on 19 slides x10 # formulas # slides x10 Skip Theory: ~7 formulas on 16 slides