Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie.

Slides:



Advertisements
Ähnliche Präsentationen
Die Verwandlung von Sonnenenergie in elektrische Energie
Advertisements

Technologie - Anlagentechnik - Anwendung
Thermische Eigenschaften von Werkstoffen
Vera Gramich und Caroline Clement,
Halbleiterschichten, -drähte und -punkte
Prof. Dr. W. Conen 15. November 2004
Termschema für die Atomhülle
Einführung in die Physik der Halbleiter
Eigenleitung von Halbleitern
Halbleiterbauelemente
Konzentration der Fremdatome  10-6
Konzentration der Fremdatome  10-6
Elektrische Leitfähigkeit Meßdaten
Energiebänder in Halbleitern
Struktur- und Gefügeanalyse II
Leiter und Isolator Ein Stromkreis besteht aus einer leitenden Verbindung zwischen den beiden Polen einer Elektrizitätsquelle, in die noch mindestens ein.
Vorlesung 9: Roter Faden: Franck-Hertz Versuch
Moderne Halbleiterdetektoren
Technische Informatik I
Maxwell-Boltzmann Ausgewählte Themen des analogen Schaltungsentwurfs
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Bildung von Löchern und Rekombination
Festkörper Halbleiter Farben und Spektren
Ralf KüstersDagstuhl 2008/11/30 2 Ralf KüstersDagstuhl 2008/11/30 3.
6. Vorlesung Inhalt: Rückblick 5. Vorlesung Kapitel pn-Diode anfangen
5. Vorlesung Inhalt: Rückblick Kapitel über Grundlagen beenden
7. Vorlesung Inhalt: Rückblick 6. Vorlesung Kapitel 4.2 und 4.3
Halbleiterelektronik
Licht machen Hans U. Güdel und Gabriela Frei
Die LED light emitting diode
VL 19 VL Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by.
Eigenschaften des Photons
Energiebänder im Festkörper
Die Entropie Maßzahl für die Wahrscheinlichkeit der Verteilung mikroskopischer Zustände.
Halbleiter Die „np Junction“
Anwendung der np junction: Wichtige Halbleiterbauelemente
Wirkung der Temperatur auf physikalische Eigenschaften
Leitfähigkeit im Festkörper
Halbleiterelektronik Wichtiges Grundwissen für den Lehramtsstudierenden der Haupt- und Realschule Foto: Christian Weiss Universität Augsburg Didaktik.
Linien und Flächen der konstanten Energie
Auslegung eines Vorschubantriebes
Elektrische Eigenschaften in Festkörpern
Anwendung der np junction: Wichtige Halbleiterbauelemente
Organische Metalle Eine erstaunlich neue Werkstoff-
Einbau von Fremdatomen der 5. Hauptgruppe
Atommodelle.
Analyseprodukte numerischer Modelle
Wenn Transistoren kalt wird…
Energiebänder im Festkörper
Halbleiter Die „np Junction“
Grundlagen der Rechnerarchitektur [CS ]
Das Siliziumatom Si Si Jedes Si-Atom besitzt vier Außenelektronen,
Halbleiter-Elektroden
Elektronik Lösungen.
Störstellenleitung Die Leitfähigkeit eines Halbleiters läßt sich deutlich erhöhen durch Einbau von Fremdatomen in den Halbleiterkristall Das Hinzufügen.
Halbleiter-Elektroden
Ausgewählte Kapitel der Physik
Fachdidaktische Übungen Stefan Heusler.
4 pn-Übergang 4.1 pn-Übergang im thermodynamischen Gleichgewicht
Halbleiter „Die wichtigste Entdeckung unserer Geschichte“
P-n-Übergänge Philipps-Universität Marburg FB 13 Physik Seminar zur Experimentalphysik II Leitung: Prof. Heimbrodt Referent: Dirk Winkel Datum:
Halbleiter-Elektroden
Halbleiterbauelemente
Konzentration der Fremdatome  10-6
FU Berlin Constanze Donner / Ludwig Pohlmann 2017
Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie.
Energiebänder in Halbleitern
Leiter, Isolator und Halbleiter
Leiter, Isolator und Halbleiter
 Präsentation transkript:

Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie abgeleitet werden Halbleiterphysik Prof. Goßner

Energie-Term-Schema Man erhält das sog. Energie-Term-Schema Energie in gerade Linien in einem Energiediagramm Energie Man überträgt die kreisförmigen Elektronenbahnen eines einzelnen Atomes Radius Jeder Elektronenbahn entspricht eine einzelne Linie im Energiediagramm (ein einzelner Energieterm) Halbleiterphysik Prof. Goßner

Energiebänder-Schema Die Elektronen vieler Atome (z.B. in einem Kristall) beeinflussen sich gegenseitig Energie Die zahllosen einzelnen Energieterme gehen in Energiebänder über Die einzelnen Energieterme lassen sich nicht mehr unterscheiden Energien zwischen den Energiebändern sind nicht möglich (verbotene Bänder) Halbleiterphysik Prof. Goßner

Energiebänder-Schema Das Energieband der äußersten Elektronenschale wird Valenzband genannt Valenzband Energie Da freie Elektronen zur Stromleitung beitragen können, spricht man vom Leitungsband Leitungsband Oberhalb des Valenzbandes befindet sich ein Energiebereich, den Elektronen einnehmen, die sich von ihren Atomen getrennt haben (freie Elektronen) Halbleiterphysik Prof. Goßner

Energiebänder-Modell Leitungsband Valenzband Verbotenes Band Reaktionen mit anderen Atomen und elektrische Vorgänge werden nur durch Elektronen im Valenzband und im Leitungsband bestimmt Üblicherweise werden daher nur diese Energiebänder und das dazwischen liegende verbotene Band dargestellt Halbleiterphysik Prof. Goßner

Energiebänder-Modell Die Oberkante des Valenzbandes liegt bei der Energie WV W Leitungsband Valenzband Verbotenes Band Wvac Wvac Wvac Wvac Die Unterkante des Leitungsbandes liegt bei der Energie WC WC WC WC WC W W W W WC – WV = W ist die Ausdehnung des verbotenen Bandes (Bandabstand) WV WV WV WV Elektronen, die die Energie Wvac überschreiten, können den Kristall verlassen Halbleiterphysik Prof. Goßner

Energiebänder-Modell von Metallen Bei Metallen überlappen sich Valenzband und Leitungsband W Leitungsband Valenzband Überlappung Die Unterkante WC des Leitungsbandes liegt tiefer als die Oberkante WV des Valenzbandes WC WV Valenzelektronen können damit ins Leitungsband wechseln, ohne Energie aufnehmen zu müssen Halbleiterphysik Prof. Goßner

Energiebänder-Modell von Halbleitern W W Leitungsband Valenzband Verbotenes Band WV WC W Leitungsband Valenzband Verbotenes Band WV WC W Bei Halbleitern existiert ein verbotenes Band zwischen Valenzband und Leitungsband Bei Germanium beträgt der Bandabstand W  0,7 eV Bei Silizium beträgt der Bandabstand W  1,1 eV Halbleiterphysik Prof. Goßner

Energiebänder-Modell von reinen Halbleitern W Leitungsband Verbotenes Band WV WC W Valenzband Bei T = 0 K halten sich alle Valenzelektronen im Valenzband auf Bei T = 0 K ist der Halbleiter ein Isolator. Das Leitungsband ist leer Halbleiterphysik Prof. Goßner

Energiebänder-Modell von reinen Halbleitern Bei T > 0 K nehmen die Elektronen Energie auf. W Leitungsband Verbotenes Band WV WC W Valenzband Beträgt die Energieaufnahme bei einem Elektron  W, so wird es ins Leitungsband angehoben W Im Valenzband bleibt ein nicht besetzter Energieterm zurück, ein Loch Freie Elektronen und Löcher entstehen beim reinen Halbleiter immer paarweise:  Paarbildung Halbleiterphysik Prof. Goßner

Energiebänder-Modell von Nichtleitern Es ist nicht möglich Valenzelektronen eine Energie von mehr als ca. 2,5 eV zuzuführen W Leitungsband (immer unbesetzt) Valenzband (immer voll besetzt) Verbotenes Band WV WC W Materialien mit einem Bandabstand von W  2,5 eV sind daher Nichtleiter (Isolatoren) Beispiel: Diamant W  7 eV Halbleiterphysik Prof. Goßner

Energieverteilung der Ladungsträger Über die Energieverteilung der Ladungsträger können nur Wahrscheinlichkeits-Aussagen getroffen werden Die Ladungsträgerdichte n(W) auf einem bestimmten Energieniveau hängt ab von der dort herrschenden Dichte D(W) der besetzbaren Energieterme (= Zustandsdichte) und von der Wahrscheinlichkeit P(W), daß die einzelnen Energieterme mit Ladungsträgern besetzt sind Es gilt: n(W) = D(W) · P(W) Halbleiterphysik Prof. Goßner

Dichte besetzbarer Energieterme = Zustandsdichte W WV WC Dn(W) Dp(W) In der Nähe der Bandkanten gilt für die Zustandsdichte näherungsweise: Bei Null beginnend wächst die Zustandsdichte zum Bandinneren hin Halbleiterphysik Prof. Goßner

Besetzungswahrscheinlichkeit Die Besetzungswahrscheinlichkeit der Energieterme folgt der Fermi-Dirac-Verteilung k = 1,38 ·10-23 Ws/K (Boltzmann-Konstante) T = absolute Temperatur WF = Fermi-Niveau (Fermi-Energie) Halbleiterphysik Prof. Goßner

Besetzungswahrscheinlichkeit bei T = 0 K Für W > WF P(W>WF) = 0 Halbleiterphysik Prof. Goßner

Besetzungswahrscheinlichkeit bei T = 0 K Für W < WF P(W<WF) = 1 Halbleiterphysik Prof. Goßner

Besetzungswahrscheinlichkeit bei T = 0 K 1 0,5 WF W P(W) Bei T = 0 K ergibt die Fermi-Dirac-Verteilung eine Sprungfunktion Bei T = 0 K sind alle Energieniveaus oberhalb von WF unbesetzt [P(W) = 0] Bei T = 0 K sind alle Energieniveaus unterhalb von WF besetzt [P(W) = 1] Halbleiterphysik Prof. Goßner

Besetzungswahrscheinlichkeit bei T > 0 K 1 0,5 WF W P(W) Bei T > 0 K ergibt die Fermi-Dirac-Verteilung einen stetigen Übergang von P(W) = 0 zu P(W) = 1 300 K 500 K Bei W = WF beträgt die Besetzungswahrscheinlichkeit: WF 0,5 WF 0,5 WF 0,5 WF 0,5 P(WF) = 0,5 Halbleiterphysik Prof. Goßner

Lage des Fermi-Niveaus bei reiner Eigenleitung W Leitungsband WV WC Valenzband Beim reinen (nicht dotierten) Halbleiter liegt das Fermi-Niveau in der Mitte des verbotenen Bandes WF WF WF WF Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung bei Eigenleitung T = 0K Alle besetzbaren Energieterme unterhalb des Fermi-Niveaus (also im Valenzband) sind vollständig mit Elektronen besetzt. Es gibt keine Löcher Alle besetzbaren Energieterme oberhalb des Fermi-Niveaus (also im Leitungsband) sind unbesetzt. Es gibt keine freien Elektronen. Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung bei Eigenleitung T > 0K Durch Energiezufuhr werden Elektronen aus dem Valenzband ins Leitungsband angehoben (Paarbildung) Freie Elektronen im Leitungsband Gleich viele Löcher im Valenzband Einzelne Elektronen fallen unter Energieabgabe vom Leitungsband ins Valenzband zurück (Rekombination) Freie Elektronen und Löcher löschen sich gegenseitig aus Temperaturabhängiges Gleichgewicht zwischen Paarbildung und Rekombination (Intrinsic-Konzentration) Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung bei Eigenleitung Für die Energieverteilung der freien Elektronen im Leitungsband gilt: Für die Energieverteilung der Löcher im Valenzband gilt: (n(W) bzw. p(W) = Ladungsträgerdichte pro Intervall dW) Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung bei Eigenleitung Das Integral von p(W) über das gesamte Valenzband ergibt ebenfalls die Intrinsicdichte ni Das Integral von n(W) über das gesamte Leitungsband ergibt die Intrinsicdichte ni Energieverteilung freier Elektronen Energieverteilung der Löcher Dp(W) Dn(W)  {1-P(W)}  P(W) = n(W) = p(W) W WV WC WF Dn(W) Dp(W) 1 0,5 P(W) n(W) p(W) Fläche = ni Fläche = ni Halbleiterphysik Prof. Goßner

Energiebändermodell bei Störstellenleitung Durch Dotieren des Halbleiters treten besetzbare Energieterme im verbotenen Band auf sog. Störterme Die Störterme beeinflussen die Lage des Fermi-Niveaus Halbleiterphysik Prof. Goßner

Energiebändermodell bei n-leitendem Halbleiter n-leitende Element-Halbleiter sind mit 5-wertigen Fremdatomen dotiert W Leitungsband WV WC Valenzband Das jeweils fünfte Valenzelektron besitzt eine Energie im verbotenen Band nahe der Leitbandkante (Störterme) WF Störterme Dadurch verschiebt sich das Fermi-Niveau in Richtung Leitbandkante Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung bei n-Leitung Das Integral von n(W) über das gesamte Leitungsband ergibt die Majoritätsträgerdichte Energieverteilung freier Elektronen Energieverteilung der Löcher Das Integral von p(W) über das gesamte Valenzband ergibt die Minoritätsträgerdichte Das Ferminiveau verschiebt sich in Richtung Leitungsband Unterhalb der Leitbandkante treten Störterme auf Dp(W) Dn(W)  {1-P(W)}  P(W) = n(W) = p(W) W WV WC Dn(W) Dp(W) W 1 0,5 P(W) W n(W) p(W) Majoritätsträger WF Minoritätsträger Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung bei p-Leitung Das Integral von n(W) über das gesamte Leitungsband ergibt die Minoritätsträgerdichte Das Integral von p(W) über das gesamte Valenzband ergibt die Majoritätsträgerdichte Energieverteilung freier Elektronen Energieverteilung der Löcher Das Ferminiveau verschiebt sich in Richtung Valenzband Oberhalb der Valenzbandkante treten Störterme auf Dp(W) Dn(W)  {1-P(W)}  P(W) = n(W) = p(W) W WV WC Dn(W) Dp(W) W 1 0,5 P(W) W n(W) p(W) Minoritätsträger WF Majoritätsträger Halbleiterphysik Prof. Goßner

Ladungsträgerverteilung innerhalb der Bänder W n(W) p(W) n-Leitung W n(W) p(W) p-Leitung W Eigenleitung Die beweglichen Ladungsträger halten sich vorzugsweise in Bandkantennähe auf n(W) WC Freie Elektronen im Leitungsband nahe WC WV p(W) Löcher im Valenzband nahe WV Halbleiterphysik Prof. Goßner