Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
1
Vera Gramich und Caroline Clement, 20.11.2008
Magnetooszillationen Shubnikov-de-Haas Oszillation Vera Gramich und Caroline Clement,
2
Gliederung: 1. Motivation 2. Einführung Voraussetzungen
Oszillation der Gesamtenergie Shubnikov-de-Haas Effekt (SdH) De-Haas-van-Alphen Effekt (dHvA) Ausblick QHE Zusammenfassung
3
1. Motivation SdH-Oszillation
4
2. Einführung Magnetooszillationen:
z.B. SdH: Widerstand rxx oszilliert mit dHvA: magnetisches Moment m oszilliert mit QHE: keine Oszillationen, sondern Peaks im Widerstand rxx Wichtig: Oszillation nicht mit B, sondern mit !!!
5
Grund: Gesamtenergie (Fermi-Energie) oszilliert mit
jede aus der Energie ableitbare Größe oszilliert ebenfalls !! Experimentelle Bestimmung der Fermiflächen aus diesen Effekten
6
3. Voraussetzungen e- Elektron muss mindestens eine Kreisbahn vollenden (klassisch) wct >> 1 dazu benötigt man: - hohes B-Feld - lange Stoßzeit t - tiefe Temperaturen T QM: scharfe Besetzung der Energieniveaus B
7
4. Oszillation der Gesamtenergie 4.1 Bahnquantisierung im Ortsraum
Klassisch: e- im B-Feld auf Kreisbahn QM : e- durch Wellenfunktion beschrieben „Enden“ der Wellenfunktion müssen „aufeinander“ passen Semiklassísche Behandlung: Fläche und Radius der Bahn müssen quantisiert werden !!
8
Hamiltonoperator: Lösen der stationären Schrödingergleichung Energieeigenwerte En Weg motiviert: von 2 Seiten aus gesehen 2-dim harmonischer Oszillator in x-y Ebene Energieeigenwerte bekannt: Quantisierte Energieeigenwerte: . e- . Beobachter Beobachter Landau-Niveaus
9
B = 0: B ≠ 0: Umordnung der Zustände Zustände bleiben aber erhalten !!
10
4.2 Semiklassischer Ansatz von Onsager & Lifschitz
Wie sehen die Elektronenbahnen aus? kanon. Impuls: Bohr-Sommerfeld-Quantisierung: Kinetischer Term integriert: Phasenkorrektur
11
Feldimpuls-Term integriert: Insgesamt erhalten wir:
Quantisierung des magnetischen Flusses: Flußquantum Resultat: Fluß in Einheiten von f0~ 4,14*10-15 Tm2 quantisiert !!
12
Zwischenergebnis: Im Ortsraum quantisierte Bahnen
Bahn hat diskrete Fläche Quantisierung des Flusses Wie sieht quantisierte Bahn im k-Raum aus ?
13
4.3 Bahnquantisierung im k-Raum
Experimenteller Befund: - Bahn in Ortsraum ~ B - Bahn in k-Raum ~ Transformationsvorschrift: Integration Vorschrift für die Transformation der Länge eines Vektors vom Ortsraum in den k-Raum
14
Im k-Raum überstrichene Fläche:
Um welchen Betrag muss B zunehmen, dass 2 benachbarte Bahnen Sn-1 und Sn gleiche Flächen im k-Raum umschließen? Fläche im k-Raum Fläche im Ortsraum Gleiche Zunahmen von D Identische Bahnen im k-Raum
15
Im Ortsraum quantisierte Bahnen ~ B Im k-Raum quantisierte Bahnen ~
Merke: Im Ortsraum quantisierte Bahnen ~ B Im k-Raum quantisierte Bahnen ~ Physikalische Eigenschaften oszillieren mit Wie wirkt sich das auf die Gesamtenergie des Systems aus?
16
4.4 Umverteilung der Zustände im k-Raum
B = 0: diskrete Punkte Energieeigenwerte: 1 Zustand hat Fläche : Dichte der Punkte: durch 2 Quantenzahlen bestimmt!
17
diskrete Landau-Zylinder (3-dim) diskrete Landau-Kreise (2-dim)
B ≠ 0: (hohes B-Feld) diskrete Landau-Zylinder (3-dim) diskrete Landau-Kreise (2-dim) Energieeigenwerte: nur noch durch eine Quantenzahl bestimmt!
18
Umverteilung: Zustände bleiben erhalten zu festem n:
kx2 + ky2 = const Zahl der Zustände pro Quantenzahl n = Entartung: mit
19
4.5 Oszillation der Gesamtenergie (qualitativ)
B = 0 B = B1 ≠ 0 Zustände bis EF besetzt Energie erniedrigt um ins Niveau zu kommen Energie erhöht um ins Niveau zu kommen = Gesamtenergie bleibt gleich !! EF(B = 0) EF(B = B1)
20
< B-Feld steigt an Abstand der Landau-Niveaus wird größer B = 0
B ≠ 0 = B2 > B1 Keine Zustände, die Energie erniedrigt haben !!! < EF( B = 0) Gesamtenergie erhöht !!! EF( B = B2)
21
= B = 0 B ≠ 0 = B3 > B2 Nur noch 2 Landau-Niveaus besetzt
EF( B = 0) Gesamtenergie bleibt gleich !!! EF( B = B3)
22
Gesamtenergie oszilliert als Funktion von B !!
Teilweise besetzte Niveaus vollständig besetzte Niveaus
23
4.6 Oszillation der Gesamtenergie (quantitativ)
Feld B0: s Landau-Niveaus besetzt; Niveau s+1 teilweise besetzt EF liegt in Niveau s+1 B > B0: Entartung nimmt in den Niveaus s zu aus Niveau s+1 wandern Zustände in niedrigere Niveaus s wenn Niveau s+1 leer EF springt ins Niveau s ! bei bestimmten kritischen Feldern springt EF ins niedrigere Niveau !
24
- „kritische“ Felder, an denen EF springt:
- Gesamtenergie für Feld B: Gesamtzahl der e- Entartung Zahl der besetzten Niveaus
25
Gesamtenergie oszilliert mit
Nur voll besetzte Niveaus Minimum der Gesamtenergie teilweise besetzte LN Voll besetzte LN Gesamtenergie oszilliert mit damit oszilliert jede aus der Energie ableitbare thermodyn. Größe auch mit
26
5. Shubnikov-de-Haas Effekt
Gesamtenergie oszilliert mit Zustandsdichte oszilliert ebenfalls elektrische Leitfähigkeit hängt ab von Zustandsdichte an Fermienergie bzw. Widerstand r hängt ab von Streuprozessen nahe Fermienergie Streuprozesse finden statt, falls Fermienergie in Landau-Niveau liegt Widerstand r oszilliert mit : mit
27
Starke Näherung: nur (s = 1)-Term
Oszillation des Widerstandes rxx ~1/B Dämpfungsterm Die Oszillationen sind demnach periodisch mit 1/B, ihre Amplitude wird für kleiner werdendes B-Feld exponentiell gedämpft !!!
29
Experimentelle Bestimmung der Fermiflächen:
aus Messungen der Oszillationen des Widerstandes mit (1/B) kann man die Extremalfläche S (Fermifläche) bestimmen: Rekonstruktion der Fermiflächen möglich !
30
6. De-Haas-van-Alphen Effekt
Gesamtenergie oszilliert mit 1/B magnetisches Moment m oszilliert ebenfalls mit 1/B, da:
31
7. Ausblick QHE
32
8. Zusammenfassung semiklassische Betrachtung:
Bahn-Quantisierung im Ortsraum (2-dim. harmonischer Oszillator) - Landau-Niveaus Fluss hat quantisierte Einheit (hc/e) entsprechende Bahn-Quantisierung im k-Raum, d.h. Umordnung der Zustände auf Landau-Zylinder mit steigendem B-Feld wird die Entartung größer Gesamtenergie oszilliert mit 1/B - dann oszilliert auch jede aus der Energie ableitbare Größe mit 1/B z.B. SDH-Effekt: Widerstand oszilliert mit 1/B dHvA-Effekt. Magnetische Moment oszilliert mit 1/B
33
Danke für eure Aufmerksamkeit !
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.