Heute: Das schwache Gesetz der großen Zahl

Slides:



Advertisements
Ähnliche Präsentationen
Der Foliensatz ist unter einer Creative Commons-Lizenz lizenziert:
Advertisements

Problemlösen am Beispiel des Rückwärtsarbeitens
? Stichwortverzeichnis … zum Suchen
Stichwortverzeichnis
Heute Mathe, morgen DLR! Dr. Margrit Klitz
Einführung in Web- und Data-Science Grundlagen der Stochastik
gemeinsam.innovativ.nachhaltig.
Wissenschaftliche Methodik
3. Schafft das Internet neue Transaktionsdesign?
Umweltbezogene Entscheidungen - multidimensionale Bewertungsverfahren -
Michael Artin: Geometric Algebra
R What is this R thing, and is it worth some effort?
3 Elektrochemische Wandler
Elektro-Skateboards Teil I Grundlagen
Stichwortverzeichnis
8 Zündung/Motormanagement
Stichwortverzeichnis
2 Elektrische Maschinen in Kraftfahrzeugen
Herstellung von kristallinen Metalloxiden über die Schmelze mit einem Spiegelofen Gruppe 8: Yuki Meier, Vivien Willems, Andrea Scheidegger, Natascha Gray.
Kapitel 4 Traveling Salesman Problem (TSP)
Markus Lips März 2017 ETH-Vorlesung, 6. Sem. Agrarwissenschaft BSc Agrartechnik II.
Einführung in die Wahrscheinlichkeitsrechnung
Motoremissionen mobiler Anlagen – Stand der Technik
Lieber Leser, liebe Leserin,
Inhaltsverzeichnis In der vorliegenden Präsentation finden Sie unter anderem Antworten auf folgende Fragen… warum ist eine Gesetzesinitiative zum Betriebliches.
Einführung in Web- und Data-Science
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen
Industrie 4.0 für die Ausbildung 4.0
Entwicklung epistemologischer Überzeugungen
Das Verdauungssystem Präsentiert von Theresa
MasterBAV© Die neue Generation BAV
Algorithmen und Datenstrukturen
Rehwild die richtige Altersbestimmung
PSG II Neuer Pflegebedürftigkeitsbegriff und dessen Begutachtung (NBA)
Medientechnische Infrastrukturen für virtuelle und lokale Lernräume
Wissensmanagement im Zeitalter von Digitaler Transformation
«Wir bereiten uns auf die Deutschlandreise vor»
GABI UND BEN.
Pflege & Finanzierung 01. Juni 2017 Dr. Sonja Unteregger
Das Arbeitgebermodell in Zeiten des
Microsoft® Office PowerPoint® 2007-Schulung
Einführung in Web- und Data-Science
Pensionsrück-stellungen Prof. Dr. Matthias Hendler
Mathematik 10.
Betriebliche Gesundheitsförderung 2
Vorlesung Wasserwirtschaft & Hydrologie I
Liebe BetrachterInnen,
Rosebrock: Geometrische Gruppen
Forschungsmethoden in der Teilchenphysik
Neue Unterrichtsmaterialien zur Teilchenphysik Philipp Lindenau CERN | Herzlich willkommen! Präsentation mit Notizen hinterlegt!
Eröffnungsveranstaltung
Aktuelle Themen aus dem KVJS-Landesjugendamt Referat 44
Roomtour - Podio für Anfänger
175 Jahre UZH Krisenkommunikation
Frauen- Männerriegen KONFERENZ
Schulung für Microsoft® Office SharePoint® 2007
Was ist eigentlich Datenschutz?
Aktuelle Aspekte des Europäischen Zivilprozessrechts
Einführung in die Benutzung des Einkaufportals der Eckelmann AG
Wer wir sind! Ihr S-Campus-Team direkt im Campus Center. Sven Deussing
Non-Standard-Datenbanken
Amand Fäßler 3. Januar 2017; RC Bregenz
Mathematik 11 Analytische Geomerie.
Non-Standard-Datenbanken
Menger-Schwamm Ausgangsfigur in Stufe 0 ist ein Würfel
Sortieren auf Multiprozessorrechnern
Wurzeln und Irrationalität nach U.Wagner, OHG Tuttlingen
Langzeitbelichtung Ein Zugang zur Kinematik in Klassenstufe 7/8
Eine kleine Einführung in das Projekt „Mausefallenauto“
 Präsentation transkript:

Heute: Das schwache Gesetz der großen Zahl Mathematik Thema: Stochastik Heute: Das schwache Gesetz der großen Zahl

Die Frage der Größe einer Stichprobe Beispiel Ein normaler Würfel wird dreimal geworfen. Jedes Mal erscheint die Zahl 6. Anna meint: „Also ist die Wahrscheinlichkeit eine 6 zu würfeln bei 100%“. 6 Was würdest du Anna entgegnen? 6 6

Das schwache Gesetz der großen Zahl Was hat es damit auf sich? Normalerweise sind Gesetze in der Mathematik dadurch gekennzeichnet, dass man sie eindeutig beweisen kann Das schwache Gesetz der großen Zahl gehört jedoch nicht dazu Stell dir ein Zufallsexperiment mit sehr, sehr vielen Wiederholungen vor Zum Beispiel 10000x Würfeln Das schwache Gesetz der großen Zahl besagt, dass der Mittelwert dieser vielen Wiederholungen die Wahrscheinlichkeit angibt

Das schwache Gesetz der großen Zahl Beispiel Eine Münze wird geworfen Anzahl Würfe Häufigkeit Kopf Häufigkeit in % Häufigkeit Zahl 10 7 70 3 30 100 40 60 1000 523 52,3 477 47,7 10000 5105 51,05 4895 48,95 100000 50650 50,65 49350 49,35

Das schwache Gesetz der großen Zahl Was fällt dir beim Vergleich der Häufigkeiten auf? Anzahl Würfe Häufigkeit Kopf in % Häufigkeit Zahl in % 10 70 30 100 40 60 1000 52,3 47,7 10000 51,05 48,95 100000 50,65 49,35 Je mehr Würfe durchgeführt wurden, desto näher kommt die Häufigkeit an die tatsächliche Wahrscheinlichkeit von 𝟏 𝟐 (𝒂𝒍𝒔𝒐 𝟓𝟎%) heran

Erarbeitung Würfle ein paar tausend Mal und notiere die Ergebnisse gemäß der Anleitung auf AB 1  12 17 18 13 15 14 20 6 2 1 3 4 16 5 19 9 7 8 10 11