The Equations of Motion in a Rotating Coordinate System

Slides:



Advertisements
Ähnliche Präsentationen
Die deutsche Satzstellung
Advertisements

Verbs Used Impersonally With Dative Deutsch I/II Fr. Spampinato.
Can you think of some KEY phrases which would be useful in multiple contexts? Take 2 minutes with a partner and come up with as many as you can!
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
By Martin L. Loeffler.  The basic sentence has a subject and a verb.  The subject and verb need to be together.  The subject and verb need to agree.
Der formelle Imperativ – the Imperative
Coordinating Conjunctions Why we need them & how to use them deutschdrang.com.
Wind fields can e.g. be calculated using the so-called momentum equations which are based on the Navier Stokes equations. But this is complicated mathematics.
Lust auf Lesen Treffpunkt Deutsch Sixth Edition. Relative Pronoun object of a preposition Recall from chapter 9 that relative clauses describe people,
Die Fragen Wörter Wer? Was? Wann?.
Nominative & Accusative Basic Rules for Relative Pronouns in German:
Synchronization: Multiversion Concurrency Control
Deutsch 1 G Stunde. Dienstag, der 13. November 2012 Deutsch 1, G Stunde Heute ist ein G- Tag Unit: Family & home Familie & Zuhause Question: Who / How.
THE MATHEMATICS OF PARTICLES & THE LAWS OF MOTION.
Literary Machines, zusammengestellt für ::COLLABOR:: von H. Mittendorfer Literary MACHINES 1980 bis 1987, by Theodor Holm NELSON ISBN
Akkusativ Präpositionen
Alltagsleben Treffpunkt Deutsch Sixth Edition
What is a “CASE”? in English: pronouns, certain interrogatives
What is a “CASE”? in English: pronouns, certain interrogatives
Ordering Food A Guide. Im Restaurant An actual restaurant is the chance to use more formal ordering. “Ich hätte gern eine Pizza.” “Ich möchte eine Cola.”
Interrogative Words. Interrogative words, also called question words are used to ask for information.
type / function / form type of words:
GERMAN WORD ORDER ORDER s. Sentences are made up by placing a variety of words in a specific order. If the order is wrong, the sentence is difficult to.
The Journey to America… The Immigrant Experience.
COMMANDS imperative 1. you (formal): Sie 2. you (familiar plural): ihr
Studentenstreik 2009, 2010 in Deutschland Part 1: Studiengebühren.
Imperfekt (Simple Past) Irregular or strong verbs
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Memorisation techniques
Kapitel 8 Grammar INDEX 1.Command Forms: The Du-Command Form & Ihr- Command 2.Sentences & Clauses.
Here‘s what we‘ll do... Talk to the person sitting in front of you. Introduce each other, and ask each other questions concerning the information on your.
German Reflexive pronouns
Großvater Großmutter Großvater Großmutter Tante/Onkel Vater Mutter.
Als ich mein Gesicht As I my face In der Wasserspiegelung sah, In the water’s reflection saw, Lachte ich über die Erinnerungen, I laughed about the memories.
Die toten hosen German punk rock band since thirty years With many well known hits.
On the case of German has 4 cases NOMINATIVE ACCUSATIVE GENITIVE DATIVE.
Essay structure Example: Die fetten Jahre sind vorbei: Was passiert auf der Almhütte? Welche Bedeutung hat sie für jede der vier Personen? Intro: One or.
Fitness. An english presentation.
Forces Maintaining Equilibrium or Changing Motion.
Interrogatives and Verbs
Volume 1, Chapter 8.
Freizeit Thema 5 Kapitel 1 (1)
Du bist am dicksten und am dümmsten.
you: ihr ( familiar plural ) you: du ( familiar singular)
Deutsch I Telling time….
Grundlagen Englisch Passive voice HFW Bern.
Sentence Structure Connectives
Jetzt machen Venues aufmachen!!! Geh zu
Jetzt machen Venues aufmachen!!! Geh zu
Process and Impact of Re-Inspection in NRW
I use this as a starter, often at the start of a revision lesson at the end of a topic . Students work in pairs. Give each pair a copy of the blank grid.
Telling Time in German Deutsch 1 Part 1.
Students have revised SEIN and HABEN for homework
“wish” “as if” “if only it were so”
THE PERFECT TENSE IN GERMAN
Institut für Experimentelle
Uranus. Uranus is the seventh in terms of distance from the Sun, the third in diameter and the fourth in mass of the planet of the Solar System. It was.
Was ist die Verbindung hier?
type / function / form type of words:
THE PAST TENSE (Part 3) VERBS WHICH TAKE SEIN
The Conversational Past
The Conversational Past
School supplies.
Die tiere Share: Introduce the session and PDSA.
Zhunussova G., AA 81. Linguistic communication, i.e. the use of language, is characteristically vocal and verbal behaviour, involving the use of discrete.
 Präsentation transkript:

The Equations of Motion in a Rotating Coordinate System Chapter 3

Effective gravity and Coriolis force Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study the equations of motion in a rotating coordinate system. Before proceeding to the formal derivation, we consider briefly two concepts which arise therein: Effective gravity and Coriolis force

Effective Gravity g is everywhere normal to the earth’s surface R R g* Die effektive Schwerkraft hätte dann eine zum Äquator gerichtete Komponente parallel zur Erdoberfläche. Sie haben aber letztes Semester gesehen, daß die rotierende flüssige Erde, auf Grund der Zentrifugalkraft nicht als Kugel erstarrte, sondern mit einem Äquatorwulst und einer Abplattung am Pol (Radius am Äquator = Radius am Pol + 21 km). Deshalb ist die Massenverteilung so, daß g immer senkrecht zur Erdoberfläche steht. Nicht ganz korrekt wird die Schwerebeschleunigung g oft auch als Graviationsbeschleunigung bezeichnet. Wenn man g statt g* verwendet, läßt sich die Newton’sche Gleichung vereinfachen. effective gravity g on a spherical earth effective gravity on an earth with a slight equatorial bulge

Effective Gravity If the earth were a perfect sphere and not rotating, the only gravitational component g* would be radial. Because the earth has a bulge and is rotating, the effective gravitational force g is the vector sum of the normal gravity to the mass distribution g*, together with a centrifugal force W2R, and this has no tangential component at the earth’s surface. As it cooled from a liquid state, the earth has adjusted its mass distribution so that there is no equatorward force component. Thus, the slight equatorial "bulge" (equatorial radius = polar radius + 21 km) is such that g is always normal to the surface.

The Coriolis force W A line that rotates with the roundabout A line at rest in an inertial system Apparent trajectory of the ball in a rotating coordinate system

Mathematical derivation of the Coriolis force Representation of an arbitrary vector A(t) A(t) = A1(t)i + A2(t)j + A3(t)k k k ´ A(t) = A1´(t)i ´ + A2´ (t)j ´ + A3´ (t)k´ j inertial reference system rotating reference system j ´ i ´ i

The time derivative of an arbitrary vector A(t) The derivative of A(t) with respect to time the subscript “a” denotes the derivative in an inertial reference frame In the rotating frame of reference

Unit vector perpendicular to W and a Let a be any vector rotating with angular velocity W a + da a Unit vector perpendicular to W and a

Position vector r(t) Want to calculate O the absolute velocity of an air parcel The relative velocity in a rotating frame of reference is and

Example V WRe Earth’s radius This air parcel starts relative to the earth with a poleward velocity V. It begins relative to space with an additional eastwards velocity component WRe .

We need to calculate the absolute acceleration if we wish to apply Newton's second law Measurements on the earth give only the relative velocity u and therefore the relative acceleration With A = ua

absolute acceleration relative acceleration Coriolis- acceleration Centripetal acceleration Wenn die Beschleunigung du/dt in einem Koordinatensystem gemessen ist, die mit der Erde rotiert, ergibt sich durch Addition der Coriolisbeschleunigung und der Zentripetal-beschleunigung die absolute Beschleunigung daua/dt in einem Inertialsystem. Für vorgegebene |omega| und |u| wird die Coriolisbeschleunigung maximal wenn omega und u senkrecht aufeinander stehen, und wird Null, wenn omega und u parallel sind.

Centripetal acceleration Position vector r is split up R r The Centripetal acceleration is directed inwards towards the axis of rotation and has magnitude |W|2R.

Newton’s second law in a rotating frame of reference In an inertial frame: force per unit mass density In a rotating frame:

Alternative form Coriolis force Centrifugal force

Let the total force F = g* + F´ be split up With Bereits bisher wurde g = (0,0,g) und nicht g* als Schwere-beschleunigung (Graviationsbeschleunigung) verwendet [z.B. in der hydrostatischen Gleichung The centrifugal force associated with the earth’s rotation no longer appears explicitly in the equation; it is contained in the effective gravity.

This is the Euler equation in a rotating frame of reference. When frictional forces can be neglected, F’ is the pressure gradient force total pressure per unit volume per unit mass Bei der Anwendung von der obenen Gleichung ist es günstig, die Gleichung in einem kartesischen Koordinatensystem mit Nullpunkt in der Breite zu betrachten This is the Euler equation in a rotating frame of reference.

The Coriolis force does no work the Coriolis force acts normal to the rotation vector and normal to the velocity. W u is directly proportional to the magnitude of u and W. Wenn die Beschleunigung du/dt in einem Koordinatensystem gemessen ist, die mit der Erde rotiert, ergibt sich durch Addition der Coriolisbeschleunigung und der Zentripetal-beschleunigung die absolute Beschleunigung daua/dt in einem Inertialsystem. Für vorgegebene |omega| und |u| wird die Coriolisbeschleunigung maximal wenn omega und u senkrecht aufeinander stehen, und wird Null, wenn omega und u parallel sind. Note: the Coriolis force does no work because

Perturbation pressure, buoyancy force Define where p0(z) and r0(z) are the reference pressure and density fields p is the perturbation pressure Important: p0(z) and r0(z) are not uniquely defined Euler’s equation becomes g = (0, 0, -g) the buoyancy force

Important: the perturbation pressure gradient and buoyancy force are not uniquely defined. But the total force is uniquely defined. Indeed

A mathematical demonstration Momentum equation Continuity equation The divergence of the momentum equation gives: This is a diagnostic equation!

Newton’s 2nd law vertical component mass  acceleration = force

buoyancy form Put where Then where

buoyancy force is NOT unique it depends on choice of reference density ro(z) but is unique

Buoyancy force in a hurricane

Initiation of a thunderstorm z constant T U(z)

LFC LCL negative buoyancy tropopause outflow original heated air q = constant positive buoyancy LFC LCL inflow negative buoyancy

Some questions How does the flow evolve after the original thermal has reached the upper troposphere? What drives the updraught at low levels? Observation in severe thunderstorms: the updraught at cloud base is negatively buoyant! Answer: - the perturbation pressure gradient

HI HI LFC LCL positive buoyancy HI p' outflow original heated air LO inflow HI negative buoyancy

Show Hector movie

Scale analysis Assume a homogeneous fluid r = constant. Euler’s equation becomes: scales: Then Rossby number

Extratropical cyclone 2W = 10-4 s-1 L = 106 m L U = 10 ms-1

Tropical cyclone U = 50 m/sec 2W = 5 X 10-5 L = 5 x 105 m

Dust devil L L = 10 - 100 m U = 10 ms-1 2W = 10-4s-1

Show dust devil movie

Waterspout L = 100 m U = 50 ms-1 2W = 10-4s-1 L

Aeroplane wing L = 10 m U = 200 m s-1 2W = 10-4s-1

The Rossby number

Summary (i) Large scale meteorological and oceanic flows are strongly constrained by rotation (Ro << 1), except possibly in equatorial regions. (ii) Tropical cyclones are always cyclonic and appear to derive their rotation from the background rotation of the earth. They never occur within 5 deg. of the equator where the normal component of the earth's rotation is small. (iii) Most tornadoes are cyclonic, but why? (iv) Dust devils do not have a preferred sense of rotation as expected. (v) In aerodynamic flows, and in the bath (!), the effect of the earth's rotation may be ignored.

Coordinate systems and the earth's sphericity Many of the flows we shall consider have horizontal dimensions which are small compared with the earth's radius. In studying these, it is both legitimate and a great simplification to assume that the earth is locally flat and to use a rectangular coordinate system with z pointing vertically upwards. Holton (§2.3, pp31-35) shows the precise circumstances under which such an approximation is valid. In general, the use of spherical coordinates merely refines the theory, but does not lead to a deeper understanding of the phenomena.

Take rectangular coordinates fixed relative to the earth and centred at a point on the surface at latitude. k j i equator

f-plane or b-plane

In component form I will show that for middle latitude, synoptic-scale weather systems such as extra-tropical cyclones, the terms involving cos f may be neglected. The important term for large-scale motions

To a good approximation Coriolis parameter Die Corioliskraft beeinflußt nur horizontale Luftströmungen. Außerdem ist sie von der Breite phi abhängig. In Äquatornähe kann man die Wirkung der horizontalen Komponente der Corioliskraft vernachlässigen, in Richtung Pol wird sie dagegen immer größer.

Scale analysis of the equations for middle latitude synoptic systems Much of the significant weather in middle latitudes is associated with extra-tropical cyclones, or depressions. We shall base our scaling on such systems. Let L, H, T, U, W, P and R be scales for the horizontal size, vertical extent, time, |uh|, w, perturbation pressure, and density in an extra-tropical cyclone, say at 45° latitude, where f (= 2W sin f ) and 2W cos f are both of order 10-4. and

horizontal momentum equations scales U2/L 2 WU sin f 2WW cos f dP/rL orders

vertical momentum equations scales UW/L 2WU cosf dPT/rH g orders negligible the atmosphere is strongly hydrostatic on the synoptic scale. But are the disturbances themselves hydrostatic?

Question: when we subtract the reference pressure p0 from pT, is it still legitimate to neglect Dw/Dt etc? vertical momentum equations scales UW/L 2WU cosf dP/rH* gdT/T0 orders still negligible H* = height scale for a perturbation pressure difference dp of 10 mb assume that H*  H assume that dT  3oK/300 km

In summary orders In synoptic-scale disturbances, the perturbations are in close hydrostatic balance Remember: it is small departures from this equation which drive the weak vertical motion in systems of this scale.

The hydrostatic approximation The hydrostatic approximation permits enormous simplifications in dynamical studies of large-scale motions in the atmosphere and oceans.

Summary of momentum equations + a continuity equation + a thermodynamic equation

End of Chapter 3