/ SES.125 Parameterschätzung Verteilungen Torsten Mayer-Gürr

Slides:



Advertisements
Ähnliche Präsentationen
Der Foliensatz ist unter einer Creative Commons-Lizenz lizenziert:
Advertisements

Problemlösen am Beispiel des Rückwärtsarbeitens
? Stichwortverzeichnis … zum Suchen
Stichwortverzeichnis
Heute Mathe, morgen DLR! Dr. Margrit Klitz
Einführung in Web- und Data-Science Grundlagen der Stochastik
gemeinsam.innovativ.nachhaltig.
Wissenschaftliche Methodik
3. Schafft das Internet neue Transaktionsdesign?
Umweltbezogene Entscheidungen - multidimensionale Bewertungsverfahren -
Michael Artin: Geometric Algebra
R What is this R thing, and is it worth some effort?
3 Elektrochemische Wandler
Elektro-Skateboards Teil I Grundlagen
Stichwortverzeichnis
8 Zündung/Motormanagement
Stichwortverzeichnis
2 Elektrische Maschinen in Kraftfahrzeugen
Herstellung von kristallinen Metalloxiden über die Schmelze mit einem Spiegelofen Gruppe 8: Yuki Meier, Vivien Willems, Andrea Scheidegger, Natascha Gray.
Kapitel 4 Traveling Salesman Problem (TSP)
Markus Lips März 2017 ETH-Vorlesung, 6. Sem. Agrarwissenschaft BSc Agrartechnik II.
Einführung in die Wahrscheinlichkeitsrechnung
Motoremissionen mobiler Anlagen – Stand der Technik
Lieber Leser, liebe Leserin,
Inhaltsverzeichnis In der vorliegenden Präsentation finden Sie unter anderem Antworten auf folgende Fragen… warum ist eine Gesetzesinitiative zum Betriebliches.
Einführung in Web- und Data-Science
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen
Industrie 4.0 für die Ausbildung 4.0
Entwicklung epistemologischer Überzeugungen
Das Verdauungssystem Präsentiert von Theresa
MasterBAV© Die neue Generation BAV
Algorithmen und Datenstrukturen
Rehwild die richtige Altersbestimmung
PSG II Neuer Pflegebedürftigkeitsbegriff und dessen Begutachtung (NBA)
Medientechnische Infrastrukturen für virtuelle und lokale Lernräume
Wissensmanagement im Zeitalter von Digitaler Transformation
«Wir bereiten uns auf die Deutschlandreise vor»
GABI UND BEN.
Pflege & Finanzierung 01. Juni 2017 Dr. Sonja Unteregger
Das Arbeitgebermodell in Zeiten des
Microsoft® Office PowerPoint® 2007-Schulung
Einführung in Web- und Data-Science
Pensionsrück-stellungen Prof. Dr. Matthias Hendler
Mathematik 10.
Betriebliche Gesundheitsförderung 2
Vorlesung Wasserwirtschaft & Hydrologie I
Liebe BetrachterInnen,
Rosebrock: Geometrische Gruppen
Forschungsmethoden in der Teilchenphysik
Neue Unterrichtsmaterialien zur Teilchenphysik Philipp Lindenau CERN | Herzlich willkommen! Präsentation mit Notizen hinterlegt!
Eröffnungsveranstaltung
Aktuelle Themen aus dem KVJS-Landesjugendamt Referat 44
Roomtour - Podio für Anfänger
175 Jahre UZH Krisenkommunikation
Frauen- Männerriegen KONFERENZ
Schulung für Microsoft® Office SharePoint® 2007
Was ist eigentlich Datenschutz?
Aktuelle Aspekte des Europäischen Zivilprozessrechts
Einführung in die Benutzung des Einkaufportals der Eckelmann AG
Wer wir sind! Ihr S-Campus-Team direkt im Campus Center. Sven Deussing
Non-Standard-Datenbanken
Amand Fäßler 3. Januar 2017; RC Bregenz
Mathematik 11 Analytische Geomerie.
Non-Standard-Datenbanken
Menger-Schwamm Ausgangsfigur in Stufe 0 ist ein Würfel
Sortieren auf Multiprozessorrechnern
Wurzeln und Irrationalität nach U.Wagner, OHG Tuttlingen
Langzeitbelichtung Ein Zugang zur Kinematik in Klassenstufe 7/8
Eine kleine Einführung in das Projekt „Mausefallenauto“
 Präsentation transkript:

521.202 / SES.125 Parameterschätzung Verteilungen Torsten Mayer-Gürr

n x m konstante Koeffizientenmatrix Varianz / Kovarianz Lineare Transformation n x 1 Zufallsvektor m x 1 Zufallsvektor n x 1 konstanter Vektor n x m konstante Koeffizientenmatrix Erwartungswert Kovarianzmatrix 12.01.2016

Normalverteilung Definition: Die Zufallsvariable X bezeichnet man als normalverteilt mit den Parametern 𝜇 und 𝜎 2 , abgekürzt geschrieben 𝑋~𝑁(𝜇,𝜎 2 ), wenn ihre Dichte 𝑓(𝑥) gegeben ist durch für Verteilungsfunktion: Erwartungswert: Varianz: 12.01.2016

Multivariate Normalverteilung

Zweidimensionale Zufallsverteilung Zweidimensionale stetige Zufallsvariable Wahrscheinlichkeit (Verteilungsfunktion) Dichtefunktion Pail Satz: Zwei Zufallsvariablen sind genau dann voneinander unabhängig, falls gilt 12.01.2016

Zweidimensionale Normalverteilung Definition: Die Zufallsvariable X bezeichnet man als normalverteilt mit den Parametern 𝜇 und 𝜎 2 , abgekürzt geschrieben 𝑋~𝑁(𝜇,𝜎 2 ), wenn ihre Dichte 𝑓(𝑥) für Zweidimensionale Zufallsvariable mit unabhängigen Elementen 12.01.2016

Zweidimensionale Normalverteilung Multivariate Normalverteilung, wenn x und y unabhängig sind: 12.01.2016

Zweidimensionale Normalverteilung Multivariate Normalverteilung, wenn x und y unabhängig sind: Durch Drehung des Koordinatensystems lässt sich jede symmetrische Matrix auf Diagonalgestalt bringen (Eigenwertzerlegung) Produkt der Eigenwerte 12.01.2016

Multidimensionale Normalverteilung Definition: Den n x 1 Zufallsvektor x bezeichnet man als normalverteilt mit den Parametern 𝝁 und 𝚺, abgekürzt geschrieben 𝒙~𝑁(𝝁,𝚺), wenn seine Dichte 𝑓 𝒙 gegeben ist durch Pail 10.12.2014

Maximum Likelihood Schätzung (Tafel)

Verteilungen

Normalverteilung Definition: Die Zufallsvariable X bezeichnet man als normalverteilt mit den Parametern 𝜇 und 𝜎 2 , abgekürzt geschrieben 𝑋~𝑁(𝜇,𝜎 2 ), wenn ihre Dichte 𝑓(𝑥) gegeben ist durch für Verteilungsfunktion: Erwartungswert: Varianz: 12.01.2016

Normalverteilung Eine Zufallsvariable X sei normalverteilt mit den Parametern 𝜇 und 𝜎 2 : (Wahrscheinlichkeits-) Dichte, probability density function (pdf) in MATLAB: normpdf(x, mu, sigma) 12.01.2016

Normalverteilung Eine Zufallsvariable X sei normalverteilt mit den Parametern 𝜇 und 𝜎 2 : (Wahrscheinlichkeits-) Dichte, probability density function (pdf) in MATLAB: normpdf(x, mu, sigma) Verteilungsfunktion, cummulative density function (cdf) in MATLAB: normcdf(x, mu, sigma) Wahrscheinlichkeit 12.01.2016

Normalverteilung Eine Zufallsvariable X sei normalverteilt mit den Parametern 𝜇 und 𝜎 2 : (Wahrscheinlichkeits-) Dichte, probability density function (pdf) in MATLAB: normpdf(x, mu, sigma) Verteilungsfunktion, cummulative density function (cdf) in MATLAB: normcdf(x, mu, sigma) Inverse Verteilungsfunktion Gegeben Wahrscheinlichkeit P(X < x) = α, gesucht Grenze x in MATLAB: norminv(alpha, mu, sigma) 12.01.2016

Konfindenzintervalle 12.01.2016

Normalverteilung Die Größe T ist standardisiert normalverteilt: : geschätzter/gemessener Wert : Erwartungswert : bekannte Standardabw. Konfidenzintervall für die Größe T: 2,5% 95% α=5% Konfidenzintervall für den Erwartungswert 12.01.2016

Transformation von Verteilungen

Transformation von Verteilungen Zufallsvariable mit der Dichte Verteilungsfunktion Substitution Zufallsvariable mit der Dichte mit 12.01.2016

Chi-Quadrat Verteilung 12.01.2016

Chi-Quadrat Verteilung Gegeben sind n normalverteilte Zufallsvariablen: Die Quadratsumme ist Chi-Quadrat verteilt Dichte Wikipedia Gamma-Funktion in MATLAB: chi2pdf(x, n) chi2cdf(x, n) chi2inv(alpha, n) 12.01.2016

Chi-Quadrat Verteilung Die Größe T ist Chi-Quadrat verteilt: Geschätzter Varianzfaktor: Erwartungswert: Konfidenzintervall für die Größe T: Konfidenzintervall für den Varianzfaktor 12.01.2016

Einseitig / Zweiseitig x 2,5% 95% 2,5% x x 5% 95% 12.01.2016

Chi-Quadrat Verteilung Die Größe T ist Chi-Quadrat verteilt: Konfidenzintervall für die Größe T: (zweiseitig) Konfidenzintervall für die Größe T: (einseitig) x 2,5% 95% x 5% 95% 12.01.2016

Student- oder t-Verteilung 12.01.2016

Student- oder t-Verteilung Gegeben sind die Zufallsvariablen: Der Quotient ist t-verteilt und in MATLAB: tpdf(x, n) tcdf(x, n) tinv(alpha, n) Dichte Gamma-Funktion Pail 12.01.2016

Student- oder t-verteilung Die Größe T ist t verteilt: Konfidenzintervall für die Größe T: Konfidenzintervall für den Erwartungswert 12.01.2016

Fisher- oder F-Verteilung 12.01.2016

Fisher- oder F-Verteilung Gegeben sind die Zufallsvariablen: und Der Quotient ist F-verteilt Wikipedia Dichte in MATLAB: fpdf(x, m, n) fcdf(x, m, n) finv(alpha, m, n) 12.01.2016

Fisher- oder F-Verteilung Die Größe T ist F verteilt: Geschätzte Parameter: Geschätzte Residuen: Geschätzter Varianzfaktor: Geschätzte Kovarianzmatrix: Konfidenzellipse/Ellipsoid/Hyperellipse für die Größe T: Anzahl der verwendeten Parameter: 12.01.2016