Philipp Lindenau, Claudia Behnke Dillingen | 04. –

Slides:



Advertisements
Ähnliche Präsentationen
Der Foliensatz ist unter einer Creative Commons-Lizenz lizenziert:
Advertisements

Problemlösen am Beispiel des Rückwärtsarbeitens
? Stichwortverzeichnis … zum Suchen
Stichwortverzeichnis
Heute Mathe, morgen DLR! Dr. Margrit Klitz
Einführung in Web- und Data-Science Grundlagen der Stochastik
gemeinsam.innovativ.nachhaltig.
Wissenschaftliche Methodik
3. Schafft das Internet neue Transaktionsdesign?
Umweltbezogene Entscheidungen - multidimensionale Bewertungsverfahren -
Michael Artin: Geometric Algebra
R What is this R thing, and is it worth some effort?
3 Elektrochemische Wandler
Elektro-Skateboards Teil I Grundlagen
Stichwortverzeichnis
8 Zündung/Motormanagement
Stichwortverzeichnis
2 Elektrische Maschinen in Kraftfahrzeugen
Herstellung von kristallinen Metalloxiden über die Schmelze mit einem Spiegelofen Gruppe 8: Yuki Meier, Vivien Willems, Andrea Scheidegger, Natascha Gray.
Kapitel 4 Traveling Salesman Problem (TSP)
Markus Lips März 2017 ETH-Vorlesung, 6. Sem. Agrarwissenschaft BSc Agrartechnik II.
Einführung in die Wahrscheinlichkeitsrechnung
Motoremissionen mobiler Anlagen – Stand der Technik
Lieber Leser, liebe Leserin,
Inhaltsverzeichnis In der vorliegenden Präsentation finden Sie unter anderem Antworten auf folgende Fragen… warum ist eine Gesetzesinitiative zum Betriebliches.
Einführung in Web- und Data-Science
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen
Industrie 4.0 für die Ausbildung 4.0
Entwicklung epistemologischer Überzeugungen
Das Verdauungssystem Präsentiert von Theresa
MasterBAV© Die neue Generation BAV
Algorithmen und Datenstrukturen
Rehwild die richtige Altersbestimmung
PSG II Neuer Pflegebedürftigkeitsbegriff und dessen Begutachtung (NBA)
Medientechnische Infrastrukturen für virtuelle und lokale Lernräume
Wissensmanagement im Zeitalter von Digitaler Transformation
«Wir bereiten uns auf die Deutschlandreise vor»
GABI UND BEN.
Pflege & Finanzierung 01. Juni 2017 Dr. Sonja Unteregger
Das Arbeitgebermodell in Zeiten des
Microsoft® Office PowerPoint® 2007-Schulung
Einführung in Web- und Data-Science
Pensionsrück-stellungen Prof. Dr. Matthias Hendler
Mathematik 10.
Betriebliche Gesundheitsförderung 2
Vorlesung Wasserwirtschaft & Hydrologie I
Liebe BetrachterInnen,
Rosebrock: Geometrische Gruppen
Forschungsmethoden in der Teilchenphysik
Neue Unterrichtsmaterialien zur Teilchenphysik Philipp Lindenau CERN | Herzlich willkommen! Präsentation mit Notizen hinterlegt!
Eröffnungsveranstaltung
Aktuelle Themen aus dem KVJS-Landesjugendamt Referat 44
Roomtour - Podio für Anfänger
175 Jahre UZH Krisenkommunikation
Frauen- Männerriegen KONFERENZ
Schulung für Microsoft® Office SharePoint® 2007
Was ist eigentlich Datenschutz?
Aktuelle Aspekte des Europäischen Zivilprozessrechts
Einführung in die Benutzung des Einkaufportals der Eckelmann AG
Wer wir sind! Ihr S-Campus-Team direkt im Campus Center. Sven Deussing
Non-Standard-Datenbanken
Amand Fäßler 3. Januar 2017; RC Bregenz
Mathematik 11 Analytische Geomerie.
Non-Standard-Datenbanken
Menger-Schwamm Ausgangsfigur in Stufe 0 ist ein Würfel
Sortieren auf Multiprozessorrechnern
Wurzeln und Irrationalität nach U.Wagner, OHG Tuttlingen
Langzeitbelichtung Ein Zugang zur Kinematik in Klassenstufe 7/8
Eine kleine Einführung in das Projekt „Mausefallenauto“
 Präsentation transkript:

Philipp Lindenau, Claudia Behnke Dillingen | 04. – 06.10.2017 Forschungsmethoden in der Teilchenphysik II Und ausgewählte Materialen für den Schulunterricht Präsentation mit Notizen hinterlegt! Philipp Lindenau, Claudia Behnke Dillingen | 04. – 06.10.2017

Wie weist man Elementarteilchen nach? Bildgebende Detektoren Nebelkammer Blasenkammer sichtbare Teilchenspuren Elektronische Detektoren ATLAS-Detektor Geigerzähler elektrische Signale Eigenschaften der Teilchen werden daraus rekonstruiert In den Anfängen der Teilchenphysik wurden bildgebende Detektoren, wie die Nebelkammer und die Blasenkammer, verwendet. In diesen Detektoren hinterlassen Teilchen eine direkt sichtbare Spur. Aus der Aufzeichnung dieser Spur (Fotoplatten o.ä.) konnten die Eigenschaften des Teilchens per Hand rekonstruiert werden. Heutzutage verwendet man vor allem elektronische Detektoren, wie den ATLAS- Detektor, CMS, ALICE und fast alle anderen Detektoren für Beschleunigerexperimente in den letzten Jahrzehnten. In ihnen erzeugen durchfliegende Teilchen elektrische Signale, welche digitalisiert werden und so eine Information über den Durchgang eines Teilchens an einem bestimmten Ort zu einer bestimmten Zeit geben. Durch die Kombination dieser Informationen können die Spuren, Impuls, Ladung und andere Teilcheneigenschaften mittels spezieller Computersoftware berechnet werden. Obwohl Blasenkammern eine höhere Ortsauflösung erzielen als beispielsweise der ATLAS-Detektor, werden sie in modernen Experimenten nicht mehr eingesetzt. Das liegt insbesondere an der hohen Ereignisrate im LHC; nur elektronische Schaltelemente sind in der Lage, mehr als 40 Millionen Ereignisse pro Sekunde aufzuzeichnen und auszuwerten. 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen 2

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Der ATLAS-Detektor ist das hier nicht! Das ist nur der Magnet! Mehr Informationen über den ATLAS-Detektor finden Sie im Dokument [ATLAS_Materialien] auf den Seiten 17-19. 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Der ATLAS - Detektor (A Toroidal LHC AparatuS) Video: http://cds.cern.ch/record/1457384 Der ATLAS - Detektor (A Toroidal LHC AparatuS) Masse 7000t Gesamtlänge aller Kabel: 3000km ~5000 Mitarbeiter aus 35 Ländern 22 m Mehr Informationen über den ATLAS-Detektor finden Sie im Dokument [ATLAS_Materialien] auf den Seiten 17-19. 45 m 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Der ATLAS - Detektor ATLAS Toroid Magnet End-Cap Mehr Informationen über den ATLAS-Detektor finden Sie im Dokument [ATLAS_Materialien] auf den Seiten 17-19. 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Detektoraufbau am Beispiel von ATLAS http://atlas.physicsmasterclasses.org/de/zpath_playwithatlas.htm Detektoraufbau am Beispiel von ATLAS Verschiedene Subdetektoren werden „Zwiebelschalenartig“ angeordnet Aufbau von innen (Kollisionspunkt) nach außen Spurdetektoren Elektromagnetisches Kalorimeter Hadronisches Kalorimeter Myonenkammeren Mit Magnetfeldern werden Teilchenspuren gekrümmt → Impulsmessung (und Identifikation) Mögliche Frage: Warum spricht man von einer „Spur“ und nicht von einer „Flugbahn“? Man kann Teilchen keine Bahn im klassischen Sinne zuordnen. Sie hinterlassen Signale im Detektor, die von einer Software zu einer Spur zusammengesetzt werden. Spurdetektoren kann man mit einer Digitalkamera vergleichen. In beiden Fällen geben Teilchen Energie an einen Halbleiter ab, was elektrische Signale erzeugt. Genau genommen „messen“ die Detektoren nur elektrische Signale. Die physikalischen Größen (Spuren, Impulse, Energie) werden daraus rekonstruiert bzw. berechnet. 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Spurdetektoren messen die Spuren und Impulse von geladenen Teilchen befinden sich in einem Magnetfeld Hadronisches Kalorimeter misst die Energie von Hadronen (= aus Quarks bestehende Teilchen) Mögliche Frage: Warum spricht man von einer „Spur“ und nicht von einer „Flugbahn“? Man kann Teilchen keine Bahn im klassischen Sinne zuordnen. Sie hinterlassen Signale im Detektor, die von einer Software zu einer Spur zusammengesetzt werden. Spurdetektoren kann man mit einer Digitalkamera vergleichen. In beiden Fällen geben Teilchen Energie an einen Halbleiter ab, was elektrische Signale erzeugt. Genau genommen „messen“ die Detektoren nur elektrische Signale. Die physikalischen Größen (Spuren, Impulse, Energie) werden daraus rekonstruiert bzw. berechnet. Myonenkammern messen die Spuren und Impulse von Myonen befinden sich in einem Magnetfeld Elektromagnetisches Kalorimeter misst die Energie von Elektronen, Positronen und Photonen 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

ATLAS - Spurdetektoren Pixel Detektor Bestehend aus 80 Millionen Pixel Oberfläche 1.7m2 Silicon Microstrip Tracker Bestehend aus 4,088 doppelseitigen Modulen 6 Million Auslese Kanäle 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

ATLAS - Spurdetektoren Übergangsstrahlungsdetektor 350,000 Auslese Kanäle Volumen 12m3 Besteht aus “Straw Tubes”: Geiger Müller Zählrohre Durchmesser 4mm Im Inneren 0.03mm Gold ummantelter Wolfram Draht 50,000 Straws im Barrel und 250,000 straws in den Kappen Genauigkeit der Ortsauflösung 0.17mm Zusätzlich Information über die Teilchenart 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Elektromagnetisches vs Hadronisches Kalorimeter EM Kalorimeter Nachweis via elektromagnetischen Kaskaden Abhängig von Z des Materials Hadronisches Kalorimeter Nachweis via starker Wechselwirkung 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Myonenkammern 1.150 Myonenkammern Mehr als 350.000 Driftrohren Gesamtfläche ~ eines Fußballfelds Genauigkeit der Ortsauflösung auf wenige Hundertstel Millimeter genau 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Aufgaben/Materialen für den Schulunterricht Bildgebende Detektoren Nebelkammer Blasenkammer Blasenkammer Events mit Geo Gebra Elektronische Detektoren ATLAS-Detektor Geigerzähler Event Displays von Großdetektoren In den Anfängen der Teilchenphysik wurden bildgebende Detektoren, wie die Nebelkammer und die Blasenkammer, verwendet. In diesen Detektoren hinterlassen Teilchen eine direkt sichtbare Spur. Aus der Aufzeichnung dieser Spur (Fotoplatten o.ä.) konnten die Eigenschaften des Teilchens per Hand rekonstruiert werden. Heutzutage verwendet man vor allem elektronische Detektoren, wie den ATLAS- Detektor, CMS, ALICE und fast alle anderen Detektoren für Beschleunigerexperimente in den letzten Jahrzehnten. In ihnen erzeugen durchfliegende Teilchen elektrische Signale, welche digitalisiert werden und so eine Information über den Durchgang eines Teilchens an einem bestimmten Ort zu einer bestimmten Zeit geben. Durch die Kombination dieser Informationen können die Spuren, Impuls, Ladung und andere Teilcheneigenschaften mittels spezieller Computersoftware berechnet werden. Obwohl Blasenkammern eine höhere Ortsauflösung erzielen als beispielsweise der ATLAS-Detektor, werden sie in modernen Experimenten nicht mehr eingesetzt. Das liegt insbesondere an der hohen Ereignisrate im LHC; nur elektronische Schaltelemente sind in der Lage, mehr als 40 Millionen Ereignisse pro Sekunde aufzuzeichnen und auszuwerten. 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen 12

Bildgebende Detektoren im Unterricht http://www.teilchenwelt.de/material/materialien-fuer-lehrkraefte/teilchenidentifikation-mit-detektoren/ Bildgebende Detektoren im Unterricht Blasenkammer Aufnahmen mit GeoGebra auswerten Tutorials Diverse Aufgaben auf Arbeitsblättern 2 Schwierigkeitsstufen Links im Indico Möglichkeiten zum Testen in Gruppenarbeit später 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Event Displays im Unterricht Live Kollisionen z.B bei http://atlas-live.cern.ch/ Event Displays im Unterricht So stellt eine vom CERN entwickelte Software Teilchenspuren im ATLAS-Detektor dar: Spurdetektoren elektromagnetisches Kalorimeter hadronisches Myonenkammern Diese Teilchenspuren-Darstellung wird in ähnlicher Form am CERN verwendet. Bei Teilchenphysik-Masterclasses verwenden Teilnehmer eine vereinfachte Softwareversion (Minerva oder Hypatia). Auf folgender Webseite können Sie sich über die Inhalte der Masterclasses informieren: http://atlas.physicsmasterclasses.org/de/wpath_messung.htm 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Teilchenspuren im ATLAS-Detektor Diese Übersicht zeigt, welche Teilchen Spuren oder Signale in den jeweiligen Detektorkomponenten hinterlassen. Die Krümmung im Magnetfeld ist hier vernachlässigt. Verschiedene Teilchenarten hinterlassen in verschiedenen Detektorschichten Signale; so lassen sich Teilchenarten voneinander unterscheiden. Oben sind elektrisch geladene Teilchen dargestellt, unten elektrisch neutrale Teilchen, jeweils sortiert nach ihrer Eindringtiefe. Mehr Informationen zu Teilchenspuren im ATLAS-Detektor finden Sie im Dokument [ATLAS_Materialien] auf S. 19. 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Beispiele - Das OPAL-Eventdisplay Der OPAL-Detektor war ein Detektor bei LEP Teilchenbeschleuniger, der bis 2000 im selben Tunnel wie der LHC betrieben wurde Kollisionen von Elektronen und Positronen bei Energien bis 104 GeV pro Teilchen Erzeugung sehr vieler Z-Teilchen (LEP1) und Paaren von W-Teilchen (LEP2) 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

LEP oder LHC in der Schule? LHC zwar aktueller, aber interessante Ereignisse bei LEP einfacher analysierbar Liegt u.a. an der Struktur der Projektile: Elektronen und Positronen sind Elementarteilchen, die Protonen am LHC nicht Einfachere Ausgangszustände vereinfachen auch die möglichen Endzustände und deren Beschreibung 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Das OPAL-Eventdisplay 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Das OPAL-Eventdisplay 1 Spurkammer 2 elektromagn. Kalorimeter 3 hadronisches Kalorimeter 4 Myonkammer 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Elektron oder Positron 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Photon 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Elektrisch geladenes Hadron 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Anti-/Myon 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Jets - erzeugt durch Quarks oder Gluonen 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Was hat man gemessen? Bei LEP wurde unter anderem der starke Kopplungsparameter bei verschiedenen Energien sehr genau gemessen Wie? 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Bestimmung des starken Kopplungsparameters Bei LEP wurde unter anderem der starke Kopplungsparameter bei verschiedenen Energien sehr genau gemessen Wie? 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Bestimmung des starken Kopplungsparameters Manchmal passiert aber auch das: 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Bestimmung des starken Kopplungsparameters Manchmal passiert aber auch das: 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Bestimmung des starken Kopplungsparameters Feynman-Diagramme unterscheiden sich nur durch einen zusätzlichen Vertex, an dem ein Prozess der starken WW stattfindet 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Bestimmung des starken Kopplungsparameters Die Wsk., dass ein Prozess der starken Wechselwirkung abläuft ist direkt proportional zum starken Kopplungsparameter 𝑃 3−𝐽𝑒𝑡 =𝑃 2−𝐽𝑒𝑡 ∙𝑘 ∙ 𝛼 s 𝛼 s ~ 𝑃(3−𝐽𝑒𝑡) 𝑃(2−𝐽𝑒𝑡) Dabei ist k ein Faktor, der durch weitere Kennwerte des Prozesses bestimmt wird und berechnet werden kann 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Bestimmung des starken Kopplungsparameters Bei sehr vielen Ereignissen kann aus absoluten Häufigkeiten auf Wsk. geschlossen werden 𝛼 s ~ 𝐻(3−𝐽𝑒𝑡) 𝐻(2−𝐽𝑒𝑡) 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen

Vielen Dank für Ihre Aufmerksamkeit! www.teilchenwelt.de www.facebook.de/teilchenwelt/

Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen Diskussion / Fragen 05.10.2017 Forschung trifft Schule - Lehrerfortbildung Teilchenphysik - Dillingen