Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Lehrstuhl für Aerodynamik.

Slides:



Advertisements
Ähnliche Präsentationen
Breitenabhängige Energiebilanzmodelle - Energietransport -
Advertisements

5th IAEA Technical Meeting on ECRH Gandhinagar – February 2009
Folie 1 © L-LAB 15. April 2014 Progress report about the mesopic vision as an example car lighting Stephan Völker Sabine Raphael Dirk Kliebisch.
Präsentation der Software FlexPDE5
Technische Universität Berlin Fakultät für Verkehrs- und Maschinensysteme, Institut für Mechanik Lehrstuhl für Kontinuumsmechanik und Materialtheorie,
NARVAL Meeting 12./13. January 2012
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
András Bárdossy IWS Universität Stuttgart
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
How Does Fuzzy Arithmetic Work ? © Hartwig Jeschke Institut für Mikroelektronische Schaltungen und Systeme Universität Hannover
Fakulty of Engineering Department of Process Engineering & Mass Transfer Study of the Balance and the Reduction of excessive Sludge in wastewater treatment.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
Wind fields can e.g. be calculated using the so-called momentum equations which are based on the Navier Stokes equations. But this is complicated mathematics.
September 29th 2008 Dr. Bernhard Schmidt Lehrstuhl für Allgemeine Pädagogik und Bildungsforschung der LMU Perception of Age, Expectations of Retirement.
Institut für Angewandte Mikroelektronik und Datentechnik Course and contest Results of Phase Selected Topics in VLSI Design (Module 24513) ©
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
1 Dr. R. Marklein - NFT II - SS 2003 Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie.
Synchronization: Multiversion Concurrency Control
Dr.-Ing. René Marklein - NFT I - WS 06/07 - Lecture 4 / Vorlesung 4 1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der.
Institut für Angewandte Mikroelektronik und Datentechnik Course and Contest Results of Phase 5 Eike Schweißguth Selected Topics in VLSI Design (Module.
16 April 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 1 Single Beam Collective Effects Impedances.
Magnetische Anregungen
Institut für Angewandte Mikroelektronik und Datentechnik Results of Phase 4: Layout for ST65 technology by Christoph Niemann Selected Topics.
Realisation of a Substitution Method to Perform High Precision Density Measurements of Seawater Hannes Schmidt Henning Wolf Egon Hassel.
The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.
UFZ UMWELTFORSCHUNGSZENTRUM LEIPZIG-HALLE GmbH October 2004 in Leipzig, Germany at the UFZ Centre for Environmental Research 11 th Magdeburg Seminar.
Task 1.2: Fully Coupled Hydrogeophysical Inversion of Salt-Tracer Experiments RECORD PhD Retreat 9 th -10 th June 2009 Davina Pollock, Center for Applied.
Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC B. Epp 1, V.M. Ghete 2, E. Kneringer 1, D. Kuhn 1, A. Nairz 3 1 Institut für Experimentalphysik,
Technische Universität München Forschungs-Neutronenquelle Garching, ZWE FRM-II Neutron Radioscopy of a compressor type refrigerator Johannes Brunner, Marton.
An efficient Approach for Determining the Flutter Characteristics of Rotor Blades for Multi-Megawatt Wind Turbines EWEC Presentation No. 627 CS4:
Magnetenzephalogramm, MEG
COST working group 2 – EMM Erreichbarkeitsatlas
Fakultät für Gesundheitswissenschaften Gesundheitsökonomie und Gesundheitsmanagement Universität Bielefeld WP 3.1 and WP 4.1: Macrocost.
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Numerical Modelling – Policy Interface Workshop 12. March 2007.
D. Sturzebecher, Institut für Betriebssysteme und Rechnerverbund, TU-Braunschweig Tele-Teaching with MACS n Tele-Teaching Requirements and Scenarios n.
Das Wetter Lernziele: Heute: The „Wenn“ clause! - To describe and report the weather - To discuss activities done in different types of weather - To compare.
Outline Collaborators HgTe as a 3D topological insulator Sample design
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Sevan DRAPEAU-MARTIN | Institut für Fluiddynamik | Numerical simulation of multi-layer.
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Timing RPC for prompt gamma.
Patterns and Solitons in nonlinear optical resonators Physikalisch-Technische Bundesanstalt Braunschweig/Germany V.B. Taranenko, K. Staliunas, G. Slekys.
Pion-Photon Reactions and Chiral Dynamics in Primakoff Processes at COMPASS Markus Krämer on behalf of the COMPASS collaboration supported by: Maier-Leibnitz-Labor.
QUEST-Meeting, 14. Dez. 2007, Offenbach Parametrisierung der Verdunstung in einem 2-Momenten-Schema Axel Seifert Deutscher Wetterdienst, Offenbach Geschäftsbereich.
Types of traffic models. Modelling in Transportation Planning General Aspects UNIVERSITÄT STUTTGART INSTITUT FÜR STRASSEN- UND VERKEHRSWESEN (ISV) LEHRSTUHL.
Mitglied der Helmholtz-Gemeinschaft Questions to HESR 6 th March 2012 PANDA-meetingDieter Prasuhn.
Technische Universität München In-situ Synchrotron and Neutron Diffraction studies on phase transformation in Austempered Ductile Iron (ADI) Xiaohu Li.
UNIVERSITÄT STUTTGART INSTITUT FÜR STRASSEN- UND VERKEHRSWESEN (ISV) LEHRSTUHL VERKEHRSPLANUNG UND VERKEHRSLEITTECHNIK (VuV) Erfassung von Verkehrskenngrößen.
Mitglied der Helmholtz-Gemeinschaft PANDA LV. Collaboration Meeting - Wien FEM Simulation – strip barrel staves D. Grunwald, V. Fracassi, E.
High-beta Experiment on
Cryo-Test LESER Test Bench
Process and Impact of Re-Inspection in NRW
associated to Stealth CMEs
by repeated premix emulsification
Geodätische Woche September, 2017 Berlin, Deutschland
IT QM Part2 Lecture 7 PSE GSC
CERN – TUD – GSI Webmeeting
Results from CO2 heat pump applications
Ferrite Material Modeling (1) : Kicker principle
Arbeitsfeld Lehrerausbildung im LfS Edwin Stiller
Collaborative Webmeeting November 24th, 2010 Geneve / Darmstadt
Case study Havel-Spree (Germany)
Institut für Experimentelle
Avalanche-, Debris Flow- and Mudslide RADAR
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
Calorimetry as an efficiency factor for biogas plants?
Die Messung der Zunahme der Meeresspiegels
Zhunussova G., AA 81. Linguistic communication, i.e. the use of language, is characteristically vocal and verbal behaviour, involving the use of discrete.
 Präsentation transkript:

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Lehrstuhl für Aerodynamik TUM - Seminar Strömungstechnik Steffen Schmidt, Ismail Sezal, Günter H. Schnerr, Matthias Thalhamer p max =60 bar On the computation of compressible liquid flows with dynamic phase-change: Physical model, numerical challenges and technical relevance

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Outline Motivation - Liquid flows with phase-change: Basic aspects and phenomena Physical model and numerical method - CFD-Tool CATUM, “modified” flux function - Thermodynamic model for water / water vapor Validation, Results - 2-D steady state liquid flow around circular cylinder at M ∞ = D liquid shock tube - 3-D bubble collapse - comparison with Rayleigh-Plesset-Eqn. - 3-D twisted wing - dynamic shedding - 3-D simulation “Obernach experiment” - comparison of erosion areas - 3-D multi-hole injector - wave dynamics and flow development Conclusion & Outlook

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Cavitation - Aspects Typical properties of cavitating flows within hydraulic machinery (fluid water): u ref = O(10) m/s,p ref = O(1) bar, except for fuel injection systems -> p ref = O(100) bar, ρ ref = O(1000) kg/m³,T ref = O(300) K, c ref = O(1000) m/s, p sat (T ref )=0.023 bar. M ref = – 0.01  Low Mach number flow as long as no vapor content exists! „Cavitation“ is the flow-induced evaporation/recondensation of a liquid  No external heat addition (boiling…)! Definition: Cavitation number σ:

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Cavitation phenomena Cavitation erosion Vortex cavitation Bubble and cloud cavitation Sheet and cloud cavitation Supercavitation

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Outline Motivation - Cavitating flows: Aspects and phenomena Physical model and numerical method - CFD-Tool CATUM, “modified” flux function - Thermodynamic model for water / water vapor Validation, Results - 2-D steady state liquid flow around circular cylinder at M ∞ = D liquid shock tube - 3-D bubble collapse - comparison with Rayleigh-Plesset-Eqn. - 3-D twisted wing - dynamic shedding - 3-D simulation “Obernach experiment” - comparison of erosion areas - 3-D multi-hole injector - wave dynamics and flow development Conclusion & Outlook

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical method - CATUM To solve the balance laws of mass, momentum and energy for compressible flows: - Diffusive fluxes: central discretization  not used here - Turbulence models: k-ω, EASM, ω-RSM  not used here - Semi-implicit time integration for source terms (turbulence models)  not used here No subiterations required - in contrast to pressure based approaches, therefore low cost per time step. Well suited to simulate hydrodynamic and wave dynamic features with time steps down to nanoseconds. - 3-D unsplit finite volume method (semi-discrete) - Convective fluxes: (density based solution strategy)  modified flux function + TVB (WENO-3) / TVD (VanLeer) - Explicit 4-stage Runge-Kutta scheme (2nd order accuracy, enlarged stability region)

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM „Classical“ flux function Euler equations (1-D): Approximation of the states * at the shared surface of the cells L,R – „classical“:  Solve local Riemann problem between adjacent cells!

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM „Classical“ flux function Euler equations (1-D): Approximation of the states * at the shared surface of the cells L,R – „classical“: define numerical flux:

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Consistency of the „Classical“ flux function for M  0? Investigate incompressible 2-D potential flow around circular cylinder and apply the „classical“ pressure flux… Potential solution along cylinder wall - S: Approximate average velocity differences: Apply „classical“ formula for p * : S

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM „Classical“ flux function Euler equations (1-D): Approximation of the states * at the shared surface of the cells L,R – „classical“: Inconsistent for M  0

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM „Modified“ flux function Euler equations (1-D): Approximation of the states * at the shared surface of the cells L,R – „modified“: Consistent for M  0

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Outline Motivation - Cavitating flows: Aspects and phenomena Physical model and numerical method - CFD-Tool CATUM, “modified” flux function - Thermodynamic model for water / water vapor Validation, Results - 2-D steady state liquid flow around circular cylinder at M ∞ = D liquid shock tube - 3-D bubble collapse - comparison with Rayleigh-Plesset-Eqn. - 3-D twisted wing - dynamic shedding - 3-D simulation “Obernach experiment” - comparison of erosion areas - 3-D multi-hole injector - wave dynamics and flow development Conclusion & Outlook

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Instead of modelling small scale structures we investigate average thermodynamic properties: Conservative averaging (filtering) leads to: Two-phase flow properties via integral averages per cell Consider stable thermodynamic conditions only:  constitutive relations (EOS) determine cell variables p, T

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM - Equation of state for liquid water: modified Tait EOS (thermal and caloric EOS for pure liquids) - EOS of pure water vapour: perfect gas law (thermal and caloric description of pure vapour) For water: B ≈ 3.3 ∙10 8 Pa, n ≈ 7.15, reference state ref.: expected mean temperature ( K). - EOS for saturated water/vapour: saturation conditions (conditions for saturated mixture of water and water vapour for a void fraction α  Here: Oldenbourg-polynomials) Thermodynamic model - EOS

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Combined EOS contains relations for: - pure water → modified Tait equation - vapor phase → ideal gas law - two-phase region→ saturation conditions Thermodynamic model - EOS p sat (T sat ) T sat

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Outline Motivation - Cavitating flows: Aspects and phenomena Physical model and numerical method - CFD-Tool CATUM, “modified” flux function - Thermodynamic model for water / water vapor Validation, Results - 2-D steady state liquid flow around circular cylinder at M ∞ = D liquid shock tube - 3-D bubble collapse - comparison with Rayleigh-Plesset-Eqn. - 3-D twisted wing - dynamic shedding - 3-D simulation “Obernach experiment” - comparison of erosion areas - 3-D multi-hole injector - wave dynamics and flow development Conclusion & Outlook

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical results – validation: single phase flow Case 1a: 2-D steady state liquid flow around circular cylinder at M ∞ =10 -4, grid 128 x 32 cells. Pressure coefficient c p – isolines; Drag coefficient c D,p =1.5·  NO Low Mach number problem!

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical results – validation: single phase flow Case 1b: 1-D liquid shock tube, grid 100 cells. - No oscillations, time accurate wave propagation. - High pressure difference but (only) weakly nonlinear behavior (shock Mach number M S ≈1.17).

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Bubble radius R 0 =0.4 mm, time step Δt CFD =6.5·10 -9 s, collapse time 37·10 -6 s, initial pressures p liquid =1.0 bar, p bubble =0.023 bar, T=20° C, liquid: water, bubble: water vapor. Numerical results – validation: two-phase flow Case 2a: 3-D bubble collapse – comparison with Rayleigh-Plesset solution

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Reference: C.E. Brennen: „Cavitation and Bubble Dynamics“ Simulation CATUM – top view Initial radius R 0 =0.5 mm, time step Δt CFD =6.0·10 -9 s, collapse time: 17·10 -6 s, Δt Movie =24.0·10 -6 s. Pressures: p liquid =10.0 bar, p bubble =0.023 bar, T=20°C, water/vapor. Numerical results – validation: two-phase flow Case 2b: 3-D bubble collapse with wall interaction

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical results – sheet and cloud cavitation Case 3a: 3-D simulation of the “Foeth-experiment: Twist NACA 0009” (TU Delft) 3·10 5 cells (one half of the domain) 3 ·10 6 time steps with Δt CFD =4.5·10 -8 s

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical results – sheet and cloud cavitation Case 3a: Cloud shedding and cloud collapse Dynamic shedding, blue iso-surfaces indicate α≥5%, Δt Movie =3.5·10 -2 s. Cloud collapse and shock formation, Δt Movie =4.6·10 -4 s.

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical results – sheet and cloud cavitation Experiment, E.J. Foeth et al., TU Delft Simulation CATUM.

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM 0,85 m 0,3 m u in =11 m/s T in =300 K σ ref =1.8 P out,mix =1.12 bar 3.1·10 6 cells 10 6 time steps, Δt ≈ 3·10 -7 s 64 CPU (SGI AltixBx2)  240 h. Numerical results – application: erosive two-phase flow Case 3b: 3-D simulation of the “Obernach-experiment” on cavitation erosion

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Perspective view: Two-phase regions and static pressure at the walls, Δt Movie =0.17 s. Top view: Two-phase regions, Δt Movie =0.17 s. Numerical results – application: erosive two-phase flow Case 3b: Dynamic phase-transition and related pressure field

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Experiment: Huber R., Geschwindigkeitsmaßstabseffekte bei der Kavitationserosion in der Scherschicht nach prismatischen Kavitatoren, Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft, Hrsg. Univ.-Prof. Dr.-Ing. Th. Strobl, Nr. 102, Simulation CATUM: Isosurfaces α=0.01, one instant in time. Numerical results – application: erosive two-phase flow Case 3b: Comparison of two-phase structures experiment/simulation

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM p [bar] > Numerical results – application: erosive two-phase flow Case 3b: Fragmentation of two-phase structure, collapse, shock formation 12 3 p max = 65 bar Δt 1  2 =1.17·10 -4 s Δt 2  3 =0.58·10 -4 s

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Experiment: Huber R., Geschwindigkeitsmaßstabseffekte bei der Kavitationserosion in der Scherschicht nach prismatischen Kavitatoren, Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft, Hrsg. Univ.-Prof. Dr.-Ing. Th. Strobl, Nr. 102, Simulation CATUM: Collapse induced maximum pressure at the bottom wall of the numerical test-section, analysis interval seconds. Stars indicate the barycenters (experimental) of the erosion ares. Numerical results – application: erosive two-phase flow Case 3b: Areas of intense erosion (experiment) - maximum pressures (simulation)

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM 3-D 6-hole injector, needle position at maximum lift. Computational domain, 4∙10 5 cells. p in = 600 bar p out = 26 bar d = 0.2 mm Numerical results – application: fuel injector Case 3c: 6-hole injector – CAD model and computational grid

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM t ≥ s t = 5.6·10 -6 s p in = 600 bar, p out = 26 bar Movie, s Numerical results – application: fuel injector

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Dominating behavior during: ≤ t ≤10 -4 s, p in = 600 bar, p out = 26 bar, T init = 333 K, Δt CFD = s. Numerical results – application: fuel injector Case 3c: Cavitation pattern, fragmentation and collapse - p in = 600 bar, p out = 26 bar.

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM t ≥ s t = 5.6·10 -6 s p in = 600 bar, p out = 26 bar Numerical results – application: fuel injector Movie pressure, s Movie void frac., s

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Simulation CATUM. t ≥ s. p in = 600 bar, p out = 26 bar, T init = 333 K, Δt CFD = s. Experiment R. Busch 2001 (*). p in = 600 bar, p out = 20 bar (*) Busch, R., ‘Untersuchung von Kavitationsphänomenen in Dieseleinspritzdüsen’, Ph.D. Thesis, University of Hannover, Numerical results – application: fuel injector Case 3c: Steady state cavitation pattern - comparison with experiment of Busch (*)

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Simulation CATUM t ≥ s, p in = 600 bar, p out = 26 bar, T init = 333 K, Δt CFD = s. Experiment R. Busch p in = 600 bar, p out = 1 bar α = Numerical results – application: fuel injector Case 3c: Steady state cavitation pattern - comparison with experiment of Busch (*)

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM p in (bar) (g s -1 ) (%) Numerical results – application: fuel injector Case 3c: Mass flow defect due to cavitation, p out = 26 bar = const. Investigation of mass flow rates of various inlet pressures 100 ≤ p in ≤ 1400 bar.

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Conclusion and outlook - CFD-Tool CATUM enables the simulation of compressible cavitating liquid flows including the formation and propagation of collapse induced shocks. - Modified flux function is consistent for M  0 and allows for stable integration of the governing equations if the time integration scheme contains parts of the imaginary axis. - Thermodynamic modelling of phase transition provides reasonable results:  no empirical parameters (nuclei concentration, bubble radius distribution) required! - Effects of non-condensable gas content within the liquid fluid are currently investigated. - Turbulence modelling of compressible two-phase flows …

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Thank you for your attention!

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Discussion…

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Numerical results – application: fuel injector Case 3c: Mass flow at nozzle inlet and at bore hole exit - p in = 600 bar, p out = 26 bar.

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM Shock formation and cavitation erosion Shock front Liquid embedded vapor bubble, p bubble = p sat < p liquid Clusters (clouds) of liquid embedded bubbles show comparable behavior! Idea: Resolution of large scale structures could be sufficient to predict erosive shocks. Shock front Solid wall Erosion

Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing.habil. G.H. Schnerr FLM physical situation 1 average behaviour physical situation 2