Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Faktorenanalyse 10_factor_analysis1 Faktorenanalyse 1.Einführung 2.Hauptachsen 3.Voraussetzungen 4.Berechnung 5.Korrelationsmatrizen 6.Faktorladungen,

Ähnliche Präsentationen


Präsentation zum Thema: "Faktorenanalyse 10_factor_analysis1 Faktorenanalyse 1.Einführung 2.Hauptachsen 3.Voraussetzungen 4.Berechnung 5.Korrelationsmatrizen 6.Faktorladungen,"—  Präsentation transkript:

1 Faktorenanalyse 10_factor_analysis1 Faktorenanalyse 1.Einführung 2.Hauptachsen 3.Voraussetzungen 4.Berechnung 5.Korrelationsmatrizen 6.Faktorladungen, Kommunalitäten und Eigenwerte 7.Anzahl der Faktoren 8.Faktorrotation 9.Faktoren zweiter Ordnung

2 Einführung 10_factor_analysis2 Faktorenanalyse Die Faktorenanalyse gehört zum den multivariaten Verfahren, d.h. es werden mehrere (abhängige) Variablen parallel untersucht Ziel ist die Vereinfachung eines komplexen Datensatzes Dazu werden viele Variablen zu wenigen Faktoren zusammengefasst Man sagt: Die Items (eines Fragebogens) laden auf einem Faktor Dabei stellen die Items manifeste Variablen und die Faktoren latente Variablen da

3 Einführung 10_factor_analysis3 Latente Variablen werden in Kreisen dargestellt. Manifeste Variablen werden in Rechtecken dargestellt.

4 Einführung 10_factor_analysis4

5 Ziele der Faktorenanalyse Konstruktion / Überprüfung von Fragebögen: Items zu einem psychologischen Konstrukt werden formuliert. Mit einer explorativen Faktorenanalyse (EFA) werden Subskalen gebildet, d.h. Item, die etwas Ähnliches messen, werden zu Faktoren zusammengefasst. Mit einer konfirmatorischen Faktorenanalyse (CFA) kann eine auf theoretischer Ebene begründete Skalenstruktur überprüft werden ( Strukturgleichungsmodelle, z.B. AMOS). Im Folgenden wird nur die explorative Faktorenanalyse besprochen! 10_factor_analysis5

6 Durchführung der Faktorenanalyse Ein Datensatz mit n Variablen kann als eine Punktewolke im n- dimensionalen Raum dargestellt werden: 2 Variablen (x, y) 2 Dimensionen 3 Variablen (x, y, z): 3 Dimensionen 10_factor_analysis6

7 Durchführung der Faktorenanalyse Bei einem Fragebogen gibt es natürlich viel mehr als 3 Items. Dies ist nicht mehr graphisch darstellbar. Daher wird das Vorgehen mit einer 3-dimensionalen Darstellung veranschaulicht. Als Faktoren werden neue Achsen gesucht, die die Punktewolke möglichst gut beschreiben. Die Achsen werden jeweils so gewählt, dass sie möglichst viel Varianz aufklären. Die Varianz ist in der Richtung am größten, in der die Punktewolke ihre größte Ausdehnung hat. 10_factor_analysis7

8 Hauptachsen Die erste Hauptachse (λ 1, Lambda) wird so gelegt, dass sie die Punktewolke in der größten Breite durchschneidet. 10_factor_analysis8 λ1λ1

9 Hauptachsen Die zweite Hauptachse (λ 2 ) muss von der ersten Achse unabhängig sein Dies ist dann der Fall, wenn die Achsen senkrecht aufeinander stehen. Dabei wird die Achse wieder so gelegt, dass die maximale restliche Varianz aufgeklärt wird. 10_factor_analysis9 λ2λ2 λ1λ1

10 Hauptachsen Die dritte Hauptachse (λ 3 ) muss von der ersten und der zweiten Achse unabhängig sein. Die Achse muss also einen rechten Winkel zu beiden anderen Achsen bilden. Im 3-dimensionalen Raum ist die Lage dieser Achse durch die der beiden anderen Achsen festgelegt. 10_factor_analysis10 λ2λ2 λ1λ1 λ3λ3

11 Hauptachsen Anzahl der Hauptachsen Für jede Punktewolke gibt es theoretisch so viele unabhängige Achsen, wie es Variablen gibt. Nach der Achsenbildung wird eine Person durch die Koordinaten auf den neuen Achsen dargestellt. Ziel ist eine Datenreduktion: – Es ist nichts gewonnen, wenn die Person durch die gleiche Anzahl neuer Koordinaten dargestellt wird, wie vorher Variablenwerte bekannt waren. Es werden möglichst wenige Faktoren gebildet Die Anzahl der Achsen (Faktoren) kann aufgrund von theoretischen Überlegungen erfolgen, oder sie wird nach empirischen Kriterien bestimmt. 10_factor_analysis11

12 Hauptachsen Wenn weniger Achsen gewählt werden als Variablen vorhanden sind (1 Achse bei 2 Variablen), dann bleibt ein Rest nicht aufgeklärter Varianz übrig 10_factor_analysis

13 Voraussetzungen Für die Faktorenanalyse werden mehrere (p) Variablen (z.B. Items eines Fragebogens) benötigt, wobei für jede Person der Wert auf jeder Variablen bekannt sein muss (Messwiederholung). Dabei muss gelten: – Intervallskalenniveau der Variablen – Normalverteilung der Variablen – Anzahl Vpn: N 3·p (Richtwert) Es werden nur lineare Zusammenhänge abgebildet. 10_factor_analysis13

14 Berechnung (1)Matrix der Variablenwerte: X Nxp (2)Matrix der standardisierten Werte: Z Nxp (3)Korrelationsmatrix: R pxp Kommunalitätsproblem (4)Reduzierte Korrelationsmatrix: hR pxp Extraktionsproblem (5)Faktorenladungsmatrix: A pxq Rotationsproblem (6)Rotierte Faktorenladungmatrix: A` pxq Faktorwerteproblem (7)Faktorenwertematrix: A` Nxq 10_factor_analysis14 N:Vpn pVariablen qFaktoren Iterative Abschätzung

15 Matrix der Variablenwerte In einer Zeile stehen jeweils die Werte einer Vpn für alle p Variablen. In einer Spalte stehen die Werte aller Vpn für eine Variable. 10_factor_analysis15

16 Matrix der standardisierten Werte Alle Variablen (Spalten) werden z-standardisiert, d.h. die Werte einer Spalte haben nun einen Mittelwert von M = 0 und eine Standardabweichung von SD = 1. 10_factor_analysis16

17 Korrelationsmatrix Die Korrelationsmatrix R beinhaltet die bivariaten (paar-weisen) Korrelationen aller Variablen. Auf der Hauptdiagonale steht immer der Wert 1, da jede Variable mit sich selbst perfekt korreliert (r ii =1). 10_factor_analysis17

18 Korrelationsmatrix Eine Faktorenanalyse ist nur dann sinnvoll, wenn der Datensatz substantielle Korrelationen aufweist. Dies ist dann der Fall, wenn sich die Korrelationsmatrix (R) signifikant von der Einheitsmatrix (E) unterscheidet. Eine statistische Überprüfung ist mit dem Bartlett-Test möglich. 10_factor_analysis18

19 Das Fundamentaltheorem Das Fundamentaltheorem der Faktorenanalyse besagt, dass sich jeder der standardisierten Werte als Linearkombination der Faktorwerte und der Faktorladungen beschreiben lässt: mit: – Z Nxp : standardisierte Ausgangsmatrix – F Nxp : Faktorwertematrix – A pxp : Faktorladungsmatrix – z ij :standardisierter Wert der Person i auf der Variable j – p:Anzahle der Variablen = Anzahl der Faktoren (nur am Anfang) 10_factor_analysis19

20 Faktorladungen Die Faktorladungen sind die Korrelationen der Faktorwerte mit den Ausgangswerten der Variablen. Personen, die hohe Werte auf dem Faktor haben, haben auch hohe Werte auf x (und umgekehrt) Hohe Korrelation von x und λ. – Die Korrelation eines Faktors und einer Variablen hängt vom Winkel ab: r = cos(α) – Beispiel: α = 0° r = 1 α = 90° r = 0 10_factor_analysis20

21 Die Faktorladungsmatrix Die Faktorladungsmatrix enthält die Faktorladungen (Korrel- ationen) aller Variablen auf allen Faktoren: 10_factor_analysis21 p: Variablen q: Faktoren

22 Aufgeklärte Varianz Quadriert man die Faktorladungen, ergeben sich Determinationskoeffizienten Diese geben an, wie viel Varianz einer Variablen durch diesen Faktor aufgeklärt wird. 10_factor_analysis22 p: Variablen q: Faktoren

23 Kommunalität Die Kommunalität (h²) einer Variablen ist die insgesamt durch alle Faktoren aufgeklärte Varianz dieser Variablen. Die Kommunalität wird als Zeilensumme in der Matrix der Determinationskoeffizienten berechnet. Die Kommunalität nimmt immer Werte zwischen 0 (0% aufgeklärte Varianz) und 1 (100% aufgeklärte Varianz) an. 10_factor_analysis23 p: Variablen q: Faktoren Kommunalität der Variablen j

24 Eigenwert Der Eigenwert (λ) eines Faktors gibt an, wie viel Varianz dieser Faktor an allen Variablen aufklärt. Der Eigenwert wird als Spaltensumme in der Matrix der Determinationskoeffizienten berechnet. Der Wertebereich des Eigenwerts hängt von der Anzahl der Variablen ab: 0 < λ < p. Ein Eigenwert von 1 bedeutet, dass ein Faktor insgesamt soviel Varianz aufklärt, wie eine (jede) der standardisierten Variablen aufweist. Je größer der Eigenwert eines Faktors, desto besser ist ein Faktor. Eine Selektionsstrategie zur Bestimmung der Anzahl der Faktoren besteht darin, alle Faktoren mit λ>1 zu akzeptieren. 10_factor_analysis24

25 Formen der FA Kommunalitätsproblem: Wie viel Varianz von jeder Variablen wird zu Beginn der FA aufgeklärt, also bevor die endgültige Lage der Faktoren bekannt ist? Wenn die Variable selbst als Faktor berücksichtigt wird: h² = 1 Wenn nur die anderen Variablen berücksichtigt werden: h² < 1 Bei der Hauptkomponentenanalyse (PCA = Principal Component Analysis) wird zu Beginn des Optimierungsprozesses eine Kommunalität von 1 angenommen. Bei der Hauptachsenanalyse wird zu Beginn des Optimierungsprozesses die Kommunalität für jede Variable geschätzt 10_factor_analysis25

26 Formen der FA Inhaltlicher Unterschied: Hauptkomponentenanalyse: Die insgesamt aufgeklärte Varianz wird maximiert. Es kann Faktoren geben, auf denen nur eine einzige Variable hoch lädt. Dieses Verfahren wird von Bortz empfohlen Haupachsenanalyse: Es werden Faktoren bevorzugt, auf denen viele Variablen laden. Dieses Verfahren wird von Leonhart empfohlen. 10_factor_analysis26

27 Das Extraktionsproblem Bei der Berechnung der FA werden genau so viele Faktoren wie Variablen gebildet. Um das Ziel der Datenreduktion zu erreichen, werden später die Faktoren weggelassen, die wenig Varianz aufklären. Unterschiedliche Kriterien: – Kaiser-Gutman-Regel – Kriterium der extrahierten Varianz – Screetest – Theoriegeleitetes Vorgehen 10_factor_analysis27

28 Das Extraktionsproblem Kaiser-Gutman-Regel Nach der Kaiser-Gutman-Regel werden nur Faktoren mit einem Eigenwert > 1 berücksichtigt. Nach diesem Kriterium werden also alle Faktoren berücksichtigt, die zumindest den Varianzanteil einer Variablen aufklären. Voraussetzungen: – N > 5·p – Faktorenzahl zwischen p/5 und p/3 10_factor_analysis28

29 Das Extraktionsproblem Kriterium der extrahierten Varianz Es wird festgelegt, wie viel Varianz aufgeklärt werden soll. Problem: Es kann kaum begründet werden, welcher Varianzanteil hier gewählt wird (z.B. 50%, 90%) Vorgehen: – Die Faktoren werden nach ihren Eigenwerten sortiert: – Alle Eigenwerte werden aufsummiert Sum(λ) = p – Für jeden Eigenwert wird der Anteil aufgeklärter Varianz als λ / p berechnet. – Es werden alle Faktoren berücksichtigt, bis die kumulierte Varianz das Kriterium übertrifft. 10_factor_analysis29

30 Das Extraktionsproblem 10_factor_analysis30 Eigenwerte 3 Faktoren klären über 50% der Merkmals- varianz auf. 10 Faktoren klären über 90% der Merkmalsvarianz auf. Kaiser-Gutman Kriterium

31 Das Extraktionsproblem Screetest Der Scree-Test (Geröll-Test) ist eine graphische Methode um eine sinnvolle Anzahl von Faktoren zu bestimmen. Dazu werden die Eigenwerte der Faktoren als Graphik dargestellt. Es werden nur Faktoren ausgewählt, bevor der Graph eine Ebene erreicht. Problem: Oft ist dieses Kriterium nicht eindeutig! 10_factor_analysis31

32 Das Extraktionsproblem 10_factor_analysis32

33 Das Extraktionsproblem Theoriegeleitetes Vorgehen SPSS erlaubt es auch, die Anzahl der Faktoren selbst zu wählen So ist es möglich, auszuprobieren, ob sich eine inhaltlich sinnvolle Lösung ergibt. Beispiel: – Es wird aufgrund theoretischer Überlegungen erwartet, dass sich die Aufgaben eines Intelligenztests drei Faktoren zuordnen lässt: Räumliches Vorstellungsvermögen Mathematische Intelligenz Sprachliches Intelligenz – Es wird eine Lösung mit 3 Faktoren berechnet, und überprüft, ob die Items wie erwartet auf den Faktoren laden. 10_factor_analysis33

34 Das Rotationsproblem 10_factor_analysis34 Unterschiedliche Rotationsverfahren: Zunächst wird die Position der Faktoren so gewählt, dass Sie jeweils soviel Varianz wie möglich aufklären. Wenn die Zahl und Lage der Faktoren bestimmt ist, können die Achsen um den Koordinaten Ursprung rotiert (gedreht) werden, ohne, dass Informationen verloren gehen. Durch die Rotation ändern sich natürlich die Faktorladungen Ziel der Rotation ist eine Einfachstruktur, d.h. jeder Faktor soll auf einigen Variablen sehr hoch und auf anderen Variablen sehr gering laden. Dann sind Faktoren leichter inhaltlich zu interpretieren.

35 Das Rotationsproblem 10_factor_analysis35 Unterschiedliche Rotationsverfahren: – Bei der orthogonalen Rotation bleiben die Faktoren unabhängig, d.h. sie stehen senkrecht aufeinander. – Bei der obliquen Rotation sind schiefwinklige Zusammenhänge zwischen den Faktoren erlaubt.

36 Das Rotationsproblem 10_factor_analysis36 Orthogonale Rotation Vorteil ist die Unabhängigkeit der Faktoren, d.h. es kommt zu einer maximalen Vereinfachung der Daten (Informationen ist nicht mehrfach abgebildet). Das bekannteste Verfahren der orthogonalen Rotation ist die Varimax-Methode. Bei dieser Methode werden die Spaltensummen der quadrierten Faktorladungsmatrix maximiert.

37 Das Rotationsproblem 10_factor_analysis37 Oblique Rotation Vorteil der obliquen Methode ist die Möglichkeit, Faktoren höherer Ordnung zu bestimmen. Dazu werden die Fakorwerte jeder Person erneut faktorisiert. Beispiel: – 100 Items eines Intelligenztests lassen sich auf 8 Aufgabentypen reduzieren. – Diese 8 Aufgaben laden auf drei Faktoren: Räumliches Vorstellungsvermögen; Mathematische Intelligenz; Sprachliches Intelligenz – Die drei Faktoren 2. Ordnung laden auf einem Generalfaktor Das bekannteste Verfahren der obliquen Rotation ist die Oblimin-Methode.

38 Das Rotationsproblem 10_factor_analysis38

39 SPSS 10_factor_analysis39 SPSS - Beispiel Der Fragebogen zur Lehrevaluation wird faktorenanalytisch untersucht. Dazu werden die 15 Items des Fragebogens in eine Faktorenanalyse eingegeben – Analyse: Hauptkomponenten – Rotation: Varimax – Extraktion: Kaiser-Guttman

40 SPSS 10_factor_analysis40

41 SPSS 10_factor_analysis41

42 SPSS 10_factor_analysis42 Hauptkomponenten oder Hauptachsenanalyse wählen Graphik für Scrreetest Kaiser-Guttman Kriterium

43 SPSS 10_factor_analysis43 Varimax (orthogonal) oder obimil (oblique) Rotation wählen

44 SPSS 10_factor_analysis44 Varimax (orthogonal) oder obimil (oblique) Rotation wählen

45 SPSS 10_factor_analysis45 Die Ausgabe wird übersichtlicher, wenn man kleine Faktor- Ladungen nicht anzeigen lässt

46 SPSS 10_factor_analysis46

47 SPSS 10_factor_analysis47

48 SPSS 10_factor_analysis48 Komponente 1234 Die Veranstaltung weckt mein Interesse an der Thematik,586,442,268 Die Veranstaltung eignet sich gut zur Prüfungsvorbereitung,776,328 Es werden grundlegende Modelle, Konzepte und Befunde vermittelt,592,323 Eine kritische Auseinandersetzung mit dem Thema wird angeregt,275,558,499 Zusammenhänge zu anderen Themen des Studiums werden aufgezeigt,871 Zusammenhänge zur Praxis/zu Anwendungen werden aufgezeigt,253,780 Der thematische Aufbau der Veranstaltung ist nachvollziehbar,622,338 Es wird genügend Zeit für Nachfragen und Diskussionen gegeben,461,459,398 Die Dozentin/ der Dozent ist engagiert,881 Die Dozentin/ der Dozent ist aufgeschlossen und freundlich,844 Ich beschäftige mich auch außerhalb der Vorlesung mit deren Inhalten,888 Die Begleitmaterialien für die Vorlesung sind angemessen,621 Die Dozentin/ der Dozent stellt Inhalte verständlich dar,650,472,246 Die Dozentin/ der Dozent spricht deutlich,454,582 Die eingesetzten Medien sind gut lesbar,615,435

49 SPSS 10_factor_analysis49 Komponente 1234 Die Veranstaltung weckt mein Interesse an der Thematik,586,442,268 Die Veranstaltung eignet sich gut zur Prüfungsvorbereitung,776,328 Es werden grundlegende Modelle, Konzepte und Befunde vermittelt,592,323 Eine kritische Auseinandersetzung mit dem Thema wird angeregt,275,558,499 Zusammenhänge zu anderen Themen des Studiums werden aufgezeigt,871 Zusammenhänge zur Praxis/zu Anwendungen werden aufgezeigt,253,780 Der thematische Aufbau der Veranstaltung ist nachvollziehbar,622,338 Es wird genügend Zeit für Nachfragen und Diskussionen gegeben,461,459,398 Die Dozentin/ der Dozent ist engagiert,881 Die Dozentin/ der Dozent ist aufgeschlossen und freundlich,844 Ich beschäftige mich auch außerhalb der Vorlesung mit deren Inhalten,888 Die Begleitmaterialien für die Vorlesung sind angemessen,621 Die Dozentin/ der Dozent stellt Inhalte verständlich dar,650,472,246 Die Dozentin/ der Dozent spricht deutlich,454,582 Die eingesetzten Medien sind gut lesbar,615,435

50 SPSS 10_factor_analysis50 SPSS – Beispiel 2 Der Fragebogen zur Lehrevaluation wird faktorenanalytisch untersucht. Dazu werden die 15 Items des Fragebogens in eine Faktorenanalyse eingegeben – Analyse: Hauptkomponenten – Rotation: Oblimin – Extraktion: 3 Faktoren

51 SPSS 10_factor_analysis51 Komponente 123 Die Veranstaltung weckt mein Interesse an der Thematik,665,530 Die Veranstaltung eignet sich gut zur Prüfungsvorbereitung,803,377 Es werden grundlegende Modelle, Konzepte und Befunde vermittelt,653-,432 Eine kritische Auseinandersetzung mit dem Thema wird angeregt,720-,286 Zusammenhänge zu anderen Themen des Studiums werden aufgezeigt,822 Zusammenhänge zur Praxis/zu Anwendungen werden aufgezeigt,349,731 Der thematische Aufbau der Veranstaltung ist nachvollziehbar,636-,439 Es wird genügend Zeit für Nachfragen und Diskussionen gegeben,370,633-,503 Die Dozentin/ der Dozent ist engagiert,389,304-,908 Die Dozentin/ der Dozent ist aufgeschlossen und freundlich,334,260-,861 Ich beschäftige mich auch außerhalb der Vorlesung mit deren Inhalten,312,254 Die Begleitmaterialien für die Vorlesung sind angemessen,627-,226 Die Dozentin/ der Dozent stellt Inhalte verständlich dar,770,386-,591 Die Dozentin/ der Dozent spricht deutlich,561,213-,658 Die eingesetzten Medien sind gut lesbar,659-,537

52 Faktorenanalyse - Zusammenfassung Zusammenfassung Jede Vp ist durch einen Vektor der Werte auf p z-standard- isierten Variablen gekennzeichnet. Man kann sich vorstellen, dass die Stichprobe eine Punktewolke im p-dimensionalen Raum bildet. Jetzt werden die Achsen gedreht, so dass die neuen Achsen sukzessive die maximale Varianz aufklären. Anschießend werden die Achsen weggelassen, die wenig Varianz aufklären (z.B. λ <1). Die verbleibenden Achsen definieren einen (eingeschränkten) Parameterraum. Dieser ändert sich nicht, wenn die Achsen nun erneut rotiert werden, um eine Einfachstruktur zu erreichen. 01_Einführung

53 Faktorenanalyse - Zusammenfassung Möglichkeiten für die Berechnung: Berechnungsverfahren Hauptkomponenten - Analyse Hauptachsen - Analyse Anzahl der Faktoren: Kaiser-Gutman-Kriterium (λ>1) Screetest Hypothesengeleitetes Vorgehen Art der Rotation orthogonal (Varimax) oblique (Oblimin) 01_Einführung


Herunterladen ppt "Faktorenanalyse 10_factor_analysis1 Faktorenanalyse 1.Einführung 2.Hauptachsen 3.Voraussetzungen 4.Berechnung 5.Korrelationsmatrizen 6.Faktorladungen,"

Ähnliche Präsentationen


Google-Anzeigen