Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Tutorat 8 Wiederholung Faktorenanalyse 7.07.2009.

Ähnliche Präsentationen


Präsentation zum Thema: "Tutorat 8 Wiederholung Faktorenanalyse 7.07.2009."—  Präsentation transkript:

1 Tutorat 8 Wiederholung Faktorenanalyse

2 Wiederholung Die Kovarianzanalyse ist eine ……………… der …………………… Ziel: Statistische Kontrolle einer potentiellen …………… Reduktion der ………………… Berechnung: –Zerlegung der Quadratsummen von Kovariate und AV –Zerlegung der Produktsummen –Berechnung der Modifizierten Quadratsummen –F-Test –Kontrolle der Fehlervarianzreduktion

3 Was muss gegeben sein, damit es sinnvoll ist die Kovariate bei der statistischen Auswertung zu berücksichtigen?

4 Faktorenanalyse

5 Faktorenanalyse- Fragen 1.Was ist Ziel der FA? Nenne ein Beispiel für ihren Einsatz 2.Was beschreiben die Eigenwerte? 3.Was ist Kommunalität? 4.Welche Gruppen von Rotationsarten gibt es und worin besteht der Unterschied zwischen beiden Verfahren? 5.Welche Methoden gibt es im Umgang mit dem Extraktionsproblem? 6.Voraussetzungen der FA? Zusatzfrage: Gibt es einen Zusammenhang zwischen der multiplen Regression und der FA?

6 Faktorenanalyse Die Faktorenanalyse gehört zum Bereich der multivariaten Verfahren Ziel: Die Faktorenanalyse versucht, eine Vielzahl von korrelierender Variablen auf einen kleinen Satz unabhängiger latenter Variablen (Faktoren) zu reduzieren, die einen möglichst großen Teil der Varianz der Ausgangsvariablen aufklären. Hierbei geht es um die Reduktion von Information und um die Reduktion von Redundanzen (Interkorrelationen) zwischen den Variablen. Anwendung: primär bei der Konstruktion von Fragebögen

7 Beispiel: Entwicklung eines Fragebogens zum Thema Gesellschaftliche Akzeptanz von psychischen Störungen explorativ werden Items formuliert (z.B.über Literaturrecherche) Hierbei kann es zu Unterskalen kommen, welche einzelne Merkmale abbilden –Akkzeptanz in der Öffentlichkeit –Akkzeptanz am Arbeitsplatz –Persönlicher Kontakt zu psychisch Kranken

8 Faktorenanalyse 8 Faktorenanalyse

9 Multikollinearität Durchführung einer FA generell nur dann sinnvoll, wenn die einem Faktor zugeordneten Variablen hoch miteinander korrelieren Nur wenn dies vorliegt können sinnvolle Faktoren bestimmt werden, welche die Informationen aus den Variablen zusammnfassen

10 Zwei Subgruppen: EFA und CFA 1.explorativen Faktorenanalyse (EFA) Dient dem Auffinden von Faktoren innerhalb eines Variabensatzes (Subskalen) Zusammenhänge zwischen Variablengruppen werden gesucht Keine theoretische Grundlagen zur Anzahl der Faktoren oder der Zuordnung der Variablen 2. konfirmatorischen Faktorenanalyse (CFA) Es wird überprüft, ob die in der Emperie gefundenen Daten zu einem zuvor definierten theoretischen Modell (Bestätigung eines Modells) Alternative Zuordnugen können nicht getestet werden Variablen werden a priori bestimmten Skalen zugeordnet

11 Faktorenanalyse 11 Ablauf einer Faktorenanalyse Ein Datensatz mit n Variablen kann als eine Punktewolke im n- dimensionalen Raum dargestellt werden: 2 Variablen (x, y) 2 Dimensionen 3 Variablen (x, y, z): 3 Dimensionen

12 Faktorenanalyse 12 Ablauf einer Faktorenanalyse Bei einem echten Fragebogen gibt es natürlich sehr viel mehr als 3 Items. Dies ist dann jedoch nicht mehr graphisch darstellbar. Daher wird das Vorgehen im folgenden mit einer 3-dimensionalen Darstellung veranschaulicht.

13 Faktorenanalyse 13 Ablauf einer Faktorenanalyse Als Faktoren werden neue Achsen gesucht, die die Punktewolke möglichst gut beschreiben. Die Achsen werden jeweils so gewählt, dass sie möglicht viel Varianz aufklären. Die Varianz ist in der Richtung am größten, in der die Punktewolke ihre größte Ausdehnung hat.

14 Faktorenanalyse 14 Erste Hauptachse λ1λ Die erste Hauptachse wird so gelegt, dass sie die Punktewolke in der größten Breite durchschneidet.

15 Faktorenanalyse 15 Zweite Hauptachse λ2λ2 λ1λ1 Die zweite Hauptachse muss von der ersten Achse unabhängig sein. Dies ist dann der Fall, wenn die Achsen senkrecht aufeinander stehen. Dabei wird die Achse wieder so gelegt, dass die maximale restliche Varianz aufgeklärt wird.

16 Faktorenanalyse 16 Dritte Hauptachse λ3λ3 λ1λ1 λ2λ2 Die dritte Hauptachse muss von der ersten und der zweiten Achse unabhängig sein. Die Achse muss also einen rechten Winkel zu beiden anderen Achsen bilden. Im 3-dimensionalen Raum ist die Lage dieser Achse durch die der beiden anderen Achsen festgelegt.

17 Faktorenanalyse 17 Anzahl der Hauptachsen Für jede Punktewolke gibt es theoretisch so viele unabhängige Achsen, wie es Variablen gibt. Nach der Achsenbildung wird eine Person durch die Koordinaten auf den neuen Achsen dargestellt. Ziel ist eine Datenreduktion Es ist nichts gewonnen, wenn die Information einer Person durch die gleiche Anzahl neuer Koordinaten dargestellt wird, wie vorher Variablenwerte bekannt waren. Es werden also weniger Faktoren gebildet, als Variablen vorhanden sind. Die Anzahl der Achsen (Faktoren) kann dabei entweder aufgrund von theoretischen Überlegungen erfolgen, oder aber sie wird nach einem empirischen Kriterium bestimmt (über den Anteil der aufgeklärten Varianz).

18 Voraussetzung der Faktorenanalyse Für die Faktorenanalyse werden mehrere (p) Variablen (z.B. Items eines Fragebogens) benötigt, wobei für jede Person der Wert auf jeder Variable bekannt sein muss (Messwiederholung). Dabei muss gelten: Intervallskalenniveau der Variablen Normalverteilung der Variablen Anzahl Vpn: N 3·p (Richtwert) Es werden nur lineare Zusammenhänge abgebildet!

19 Faktorenanalyse 19 Mathematisches Vorgehen (1)Matrix der Variablenwerte: X Nxp (2)Matrix der standardisierten Werte: Z Nxp (3)Korrelationsmatrix: R pxp Kommunalitätsproblem (4)Reduzierte Korrelationsmatrix: hR pxp Extraktionsproblem (5)Faktorenladungsmatrix: A pxq Rotationsproblem (6)Rotierte Faktorenladungmatrix: A` pxq Faktorwerteproblem (7)Faktorenwertematrix: A` Nxq N:Vpn pVariablen qFaktoren Iterative Abschätzung

20 Faktorenanalyse 20 Matrix der Variablenwerte In einer Zeile stehen jeweils die Werte einer Vpn für alle p Variablen. In einer Spalte stehen die Werte aller Vpn für eine Variable.

21 Faktorenanalyse 21 Matrix der standardisierten Werte Alle Variablen (Spalten) werden z-standardisiert, d.h. die Werte einer Spalte haben nun einen Mittelwert von M = 0 und eine Standardabweichung von SD = 1.

22 Faktorenanalyse 22 Korrelationsmatrix Die Korrelationsmatrix R beinhaltet die bivariaten (paar-weisen) Korrelationen aller Variablen. Auf der Hauptdiagonale steht immer der Wert 1, da jede Variable mit sich selbst perfekt korreliert (r ii =1).

23 Faktorenanalyse 23 Korrelationsmatrix Eine Faktorenanalyse ist nur dann sinnvoll, wenn der Datensatz substantielle Korrelationen aufweist. Dies ist dann der Fall, wenn sich die Korrelationsmatrix (R) signifikant von der Einheitsmatrix (E) unterscheidet. Eine statistische Überprüfung ist mit dem Bartlett-Test möglich.

24 Faktorenanalyse 24 Das Fundamentaltheorem Das Fundamentaltheorem der Faktorenanalyse besagt, dass sich jeder der standardisierten Werte als Linearkombination der Faktorwerte und der Faktorladungen beschreiben lässt: mit: Z Nxp : standardisierte Ausgangsmatrix F Nxp : Faktorwertematrix A pxp : Faktorladungsmatrix z ij :standardisierter Wert der Person i auf der Variable j p:Anzahle der Variablen = Anzahl der Faktoren (nur am Anfang!)

25 Faktorenanalyse 25 Faktorladungen Die Faktorladungen sind die Korrelationen der Faktorwerte mit den Ausgangswerten der Variablen. Personen, die hohe Werte auf dem Faktor haben, haben auch hohe Werte auf x (und umgekehrt) Hohe Korrelation von x und λ. Die Korrelation eines Faktors und einer Variablen hängt vom Winkel ab

26 Faktorenanalyse 26 Das Faktorladungsmatrix Die Faktorladungsmatrix enthält die Faktorladungen (Korrel- ationen) aller Variablen auf allen Faktoren: p: Variablen q: Faktoren

27 Faktorenanalyse 27 Aufgeklärte Varianz Quadriert man die Faktorladungen, ergeben sich Determinationskoeffizienten, die den Anteil der durch einen Faktor aufgeklärter Varianz der Gesamtvarianz einer Variablen angeben. p: Variablen q: Faktoren

28 Faktorenanalyse 28 Kommunalität Die Kommunalität (h²) einer Variablen ist die insgesamt durch alle Faktoren aufgeklärte Varianz dieser Variablen. Die Kommunalität wird als Zeilensumme in der Matrix der Determinationskoeffizienten berechnet. Die Kommunalität nimmt immer Werte zwischen 0 (0% aufgeklärte Varianz) und 1 (100% aufgeklärte Varianz) an. p: Variablen q: Faktoren Kommunalität der Variablen j

29 Faktorenanalyse 29 Eigenwert Der Eigenwert ( λ ) eines Faktors gibt an, wie viel Varianz dieser Faktor an allen Variablen aufklärt. Der Eigenwert wird als Spaltensumme in der Matrix der Determinationskoeffizienten berechnet. Der Wertebereich des Eigenwerts hängt von der Anzahl der Variablen ab: 0 < λ < p. Ein Eigenwert von 1 bedeutet, dass ein Faktor insgesamt soviel Varianz aufklärt, wie eine (jede) der standardisierten Variablen aufweist. Je größer der Eigenwert eines Faktors, desto besser ist ein Faktor. Eine Selektionsstrategie zur Bestimmung der Anzahl der Faktoren besteht darin, alle Faktoren mit λ>1 zu akzeptieren.

30 Faktorenanalyse 30 Formen der FA Kommunalitätsproblem: Wie viel Varianz von jeder Variablen wird zu Beginn der FA aufgeklärt, also bevor die endgültige Lage der Faktoren bekannt ist? Wenn die Variable selbst als Faktor berücksichtigt wird: 100% h² = 1 Wenn nur die anderen Variablen berücksichtigt werden: weniger h² < 1 Bei der Hauptkomponentenanalyse (PCA = Principal Component Analysis) wird zu Beginn des Optimierungsprozesses eine Kommunalität von 1 angenommen. Bei der Hauptachsenanalyse wird zu Beginn des Optimierungsprozesses die Kommunalität für jede Variable geschäzt

31 Faktorenanalyse 31 Formen der FA Inhaltlicher Unterschied: Hauptkomponentenanalyse: Die insgesamt aufgeklärte Varianz wird maximiert. Es kann Faktoren geben, auf denen nur eine einzige Variable hoch lädt. Dieses Verfahren wird von Bortz empfohlen Haupachsenanalyse: Es werden Faktoren bevorzugt, auf denen viele Variablen laden. Dieses Verfahren wird von Leonhart empfohlen.

32 Faktorenanalyse 32 Das Extraktionsproblem Zur Berechnung der FA, werden genau so viele Faktoren wie Variablen gebildet Datenreduktion?? Später: Faktoren weggelassen, die wenig Varianz aufklären. Unterschiedliche Kriterien: Kaiser-Gutman-Regel Kriterium der extrahierten Varianz Screetest Theoriegeleitetes Vorgehen

33 Faktorenanalyse 33 Kaiser-Gutman-Regel Nach der Kaiser-Gutman-Regel werden nur Faktoren mit einem Eigenwert > 1 berücksichtigt. Nach diesem Kriterium werden also alle Faktoren berücksichtigt, die zumindest den Varianzanteil einer Variablen aufklären. Vorraussetzungen: N > 5·p Faktorenzahl zwischen p/5 und p/3

34 Faktorenanalyse 34 Kriterium der extrahierten Varianz Es wird festgelegt, wie viel Varianz aufgeklärt werden soll. Problem: Es kann kaum begründet werden, welcher Varianzanteil hier gewählt wird (z.B. 50%, 90%) Vorgehen: Die Faktoren werden nach ihren Eigenwerten sortiert: Alle Eigenwerte werden aufsummiert Sum( λ) = p Für jeden Eigenwert wird der Anteil aufgeklärter Varianz als λ / p berechnet. Es werden alle Faktoren berücksichtigt, bis die kumulierte Varianz das Kriterium übertrifft:

35 Faktorenanalyse 35 Kriterium der extrahierten Varianz Eigenwerte 3 Faktoren klären über 50% der Merkmals- varianz auf. 10 Faktoren klären über 90% der Merkmalsvarianz auf. Kaiser-Gutman Kriterium

36 Faktorenanalyse 36 Screetest Der Scree-Test (Geröll-Test) ist eine graphische Methode um eine sinnvolle Anzahl von Faktoren zu bestimmen. Dazu werden die Eigenwerte der Faktoren als Graphik dargestellt. Es werden nur Faktoren ausgewählt, bevor der Graph eine Ebene erreicht. Problem: Oft ist dieses Kriterium nicht eindeutig!

37 Faktorenanalyse 37 Screetest

38 Faktorenanalyse 38 Theoriegeleitetes Vorgehen SPSS erlaubt es auch, direkt die Anzahl der erwünschten Faktoren einzugeben. So ist es möglich, verschiedene Lösungen auszuprobieren, und jeweils zu überprüfen, ob sich eine inhaltlich sinnvolle Lösung ergibt. Beispiel: Es wird aufgrund theoretischer Überlegungen erwartet, dass sich die Aufgaben eines Intelligenztests drei Faktoren zuordnen lässt: Räumliches Vorstellungsvermögen Mathematische Intelligenz Sprachliches Intelligenz Es wird eine Lösung mit 3 Faktoren berechnet, und überprüft, ob die Items wie erwartet auf den Faktoren laden.

39 Faktorenanalyse 39 Das Rotationsproblem Oftmals ist für eine inhaltlich sinnvolle Interpretation nach der Exraktion eine Rotation erforderlich Jede Variable soll nach der Rotation auf einen Faktor sehr hoch und auf alle anderen Faktoren sehr niedrig laden Ziel der Rotation: Einfachstruktur, d.h. jeder Faktor soll auf einigen Variablen sehr hoch und auf anderen Variablen sehr gering laden. Dann sind Faktoren leichter inhaltlich zu interpretieren

40 Faktorenanalyse 40 Das Rotationsproblem Unterschiedliche Rotationsverfahren: Bei der orthogonalen Rotation bleiben die Faktoren unabhängig, d.h. sie stehen senkrecht aufeinander. Bei der obliquen Rotation sind schwiefwinklinge Zusammenhänge zwischen den Faktoren erlaubt.

41 Faktorenanalyse 41 Orthogonale Rotation Vorteil: Unabhängigkeit der Faktoren, d.h. es kommt zu einer maximalen Vereinfachung der Daten Informationen ist nicht mehrfach abgebildet Faktoren korrelieren nicht miteinander Das bekannteste Verfahren der orthogonalen Rotation ist die Varimax-Methode. Bei dieser Methode werden die Spaltensummen der quadrierten Faktorladungsmatrix maximiert.

42 Faktorenanalyse 42 Oblique Rotation Das bekannteste Verfahren der obliquen Rotation ist die Oblimin-Methode. Vorteil: Möglichkeit, Faktoren höherer Ordnung zu bestimmen. Dazu werden die Faktorwerte jeder Person erneut faktorisiert. Beispiel: 100 Items eines Intelligenztests lassen sich auf 8 Aufgabentypen reduzieren. Diese 8 Aufgaben laden auf drei Faktoren: Räumliches Vorstellungsvermögen; Mathematische Intelligenz; Sprachliches Intelligenz Die drei Faktoren 2. Ordnung laden auf einem Generalfaktor

43 Faktorenanalyse 43

44 Faktorenanalyse 44 Faktorenanalyse - Zusammenfassung Entscheidungen für die Berechnung: Berechnungsverfahren -Hauptkomponenten - Analyse -Hauptachsen - Analyse Anzahl der Faktoren: -Kaiser-Gutman-Kriterium (λ<1) -Screetest -Hypothesengeleitetes Vorgehen Art der Rotation -orthogonal (Varimax) -oblique (Oblimin)


Herunterladen ppt "Tutorat 8 Wiederholung Faktorenanalyse 7.07.2009."

Ähnliche Präsentationen


Google-Anzeigen