Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Konfluenz in aktiven DB Vortragsreihe zum Thema „Aktive Datenbanken“ des Lehrstuhls für Datenbanken und Informationssysteme der Friedrich-Schiller-Universität.

Ähnliche Präsentationen


Präsentation zum Thema: "Konfluenz in aktiven DB Vortragsreihe zum Thema „Aktive Datenbanken“ des Lehrstuhls für Datenbanken und Informationssysteme der Friedrich-Schiller-Universität."—  Präsentation transkript:

1 Konfluenz in aktiven DB Vortragsreihe zum Thema „Aktive Datenbanken“ des Lehrstuhls für Datenbanken und Informationssysteme der Friedrich-Schiller-Universität Jena

2 Laura Elisabeth Hombach2 Gliederung (1) 1.„Was bedeutet Konfluenz“ – an einem Beispiel 2.Lösungsansätze a.RAG b.Kommutativität c.Erweiterte Aktionen d.Beeinflussungsfreiheit 3.Laufzeitüberwachung

3 Laura Elisabeth Hombach3 Gliederung (2) 4.Behandlungs-Möglichkeiten bei nicht konfluenten DB 5.Partielle Konfluenz 6.Umgang von DBMS mit Konfluenz 7.Zusammenfassung 8.Ausblick 9.Literatur

4 Laura Elisabeth Hombach4 Problemstellung Wenn n ungeordnete Paare von Regeln gleichzeitig getriggert, kann der Datenbank- Endzustand davon abhängen, in welcher Reihenfolge die Regeln ausgeführt werden.

5 Laura Elisabeth Hombach5 Ungeordnete Paare r 1, r 2  R wobei gilt: r 1 < r 2  P und r 2 < r 1  P gelten nicht

6 Laura Elisabeth Hombach6 Beispiel (1) Regel 1 (r 1 ): Es verringert sich der Preis eines Buches um 5 €, wenn das Erscheinungsdatum 1 Jahr zurückliegt Regel 2 (r 2 ): Wenn der Autor eine Aus- zeichnung bekommt, erhöht sich der Preis seiner Bücher um 2% Buchpreis = 10€

7 Laura Elisabeth Hombach7 Beispiel (2) Es greifen sowohl r 1 als auch r 2 Bei der Ausführungsreihenfolge r 1  r 2 sinkt der Buchpreis auf 5,10 € Bei der Ausführungsreihenfolge r 2  r 1 sinkt der Buchpreis auf 5,20 € Die Regelmenge ist nicht konfluent

8 Laura Elisabeth Hombach8 Definition - Konfluenz „Eine Regelmenge R ist konfluent, wenn für alle denkbaren Datenbankzustände DB und alle DML-Operationen der nach Regelauswertung erreichte Endzustand im Regelausführungsgraphen, in dem keine Regel mehr getriggert ist, eindeutig ist“ [Weik]

9 Laura Elisabeth Hombach9 Lösungsansätze Nutzer darauf aufmerksam machen, daß Konfluenz auftreten kann Ein Ereignis darf max. eine Regel auslösen Totale Ordnung der Regelmenge Partielle Ordnung der Regelmenge Sicherung der Kommutativität von Regelmengen

10 Laura Elisabeth Hombach10 Erläuterung Zur Konfluenz Erkennung  Unterscheidung zwischen drei Regeldefinitionen (Immediate, Deferred und Decoupled) Immediate und Decoupled gemeinsam betrachtet werden Wegen hohen Komplexität wird hier auf die Unterscheidung verzichtet (Für Weitere Informationen siehe [Weik])

11 Laura Elisabeth Hombach11 Regelausführungsgraph (RAG) Gerichteter Graph RAG = (V,E) R = Regelmenge R T sind die Regeln der Regelmenge, welche momentan getriggert sind Eckmengen E  SxS  (S,S‘)  E mit r  R T Ecken S = (DB, R T ) S I = Ausgangszustand

12 Laura Elisabeth Hombach12 RAG (2) SISI S2S1 S‘ r2r2 r1r1

13 Laura Elisabeth Hombach13 Kommutativität Zwei Regeln r 1, r 2 sind kommutativ, wenn bei der Ausführung von r 1  r 2 dasselbe Endergebnis erreicht wird wie bei der Ausführungsreihenfolge r 2  r 1 (ein r  R ist immer mit sich selber kommutativ)

14 Laura Elisabeth Hombach14 Kommutativität im RAG SISI S2S1 S‘ r2r2 r1r1 r1r1 r2r2

15 Laura Elisabeth Hombach15 Erweiterte Aktionen (1) Zwei Regeln r 1, r 2  R (r 1 und r 2 sind kommutativ) r 1 triggert r  R r > r 2  P (wobei P die Prioritätsmenge der Regeln ist) Daraus ergeben sich zwei Abarbeitungs- reihenfolgen  Kein eindeutiges S‘

16 Laura Elisabeth Hombach16 EA im RAG SISI S2S1 r2r2 r1r1 rr2r2 S1‘S2‘ r1r1 r

17 Laura Elisabeth Hombach17 Erweiterte Aktionen (2) EA1 = Alle r  R, welche direkt oder indirekt durch r 1 getriggert werden EA2 = Alle r  R, welche direkt oder indirekt durch r 2 getriggert werden

18 Laura Elisabeth Hombach18 Erweiterte Aktionen im RAG SISI S2S1 S‘ r2r2 r1r1 r1r1 r2r2 S1‘S2‘ EA2EA1 EA2

19 Laura Elisabeth Hombach19 Konfluenz – Erweiterte Def. Alle ungeordneten Paare {r 1 }  EA1 und {r 2 }  EA2, welche kommutativ sind und im RAG terminieren, sind konfluent (für Deferred Regelen reicht diese Annahme nicht aus  siehe [Weik])

20 Laura Elisabeth Hombach20 Kommutativität – weitere Def. Zwei Regeln r 1, r 2  R sind kommutativ, wenn sie beeinflussungsfrei sind

21 Laura Elisabeth Hombach21 Beeinflussungsfreiheit r  EA1  {r 1 } triggert bzw. deaktiviert r 2 nicht r  EA1  {r 1 } ändert nicht den Wahrheitswert von r‘  EA2  {r 2 } r  EA1  {r 1 } ändert nichts, was durch r‘  EA2  {r 2 } gelesen bzw. geändert wird Und analog für r‘  EA2  {r 2 }

22 Laura Elisabeth Hombach22 Beispiel – Beeinflussungsfreiheit (1) r 1 = Es verringert sich der Preis eines Buches um 5 €, wenn das Erscheinungsdatum 1 Jahr zurückliegt EA1  r = Buchpreis  0,5 €  Warnung  r* = Erscheinungsdatum liegt länger als 10 Jahre zurück  Buchpreis weniger 0,5€ r 2 = Wenn nur noch 1 Exemplar eines Buches vorhanden ist, generiere eine Bestellung über 5 neue Exemplare EA2  Leer

23 Laura Elisabeth Hombach23 Beispiel – Beeinflussungsfreiheit (2) Buchpreis = 10€ Anzahl = 2 Erscheinungsdatum =

24 Laura Elisabeth Hombach24 Beispiel – Beeinflussungsfreiheit (3) Bei der Ausführungsreihenfolge r 1  r 2 Buchpreis = 5€ und r, r* und r 2 werden nicht aktiv Bei der Ausführungsreihenfolge r 2  r 1 Buchpreis = 5€ und r, r* und r 2 werden nicht aktiv

25 Laura Elisabeth Hombach25 Beispiel – Beeinflussungsfreiheit (4) EA1  {r 1 } kann r 2 nicht triggern oder deaktivieren Die Wahrheitswerte von EA2  {r 2 } bleiben unverändert EA1  {r 1 } und EA2  {r 2 } arbeiten auf disjunkten Teilen der DB  Es liegt Beeinflussungsfreiheit vor (für weitere Informationen siehe [Weik])

26 Laura Elisabeth Hombach26 Bemerkung Kommutativität  hinreichende Bedingung Ausgabe von Werten welche konfluent sind

27 Laura Elisabeth Hombach27 Laufzeitüberwachung Keine Überwachung der Konfluenz Abbruch der Transaktion, wenn nicht Konfluenz vermutet wird (bzw. Informierung des DBA) Warnung der Applikationen Ausführung von einer begrenzten Anzahl von Alternativen auf Kopien

28 Laura Elisabeth Hombach28 Behandlungs-Möglichkeiten bei nicht konfluenten DB Bestätigen, daß r 1 und r 2 doch konfluent sind Definition einer Priorität zwischen r 1 und r 2 Entfernen einer Priorität

29 Laura Elisabeth Hombach29 Partielle Konfluenz (1) Die Bedingung der Konfluenz ist für manche R zu stark Aufteilung der Tabellenmenge T in wichtige- (T‘) und unwichtige Tabellen

30 Laura Elisabeth Hombach30 Partielle Konfluenz (2) Nur T‘ muss konfluent sein  der RAG muss nicht eindeutig sein Die Endzustände müssen nur für T‘ eindeutig sein Alle relevanten Regeln für T‘ (Sig (T‘)) müssen für sich terminieren

31 Laura Elisabeth Hombach31 Partielle Konfluenz im RAG SISI S2S1 r2r2 r1r1 r1r1 r2r2 S1‘S2‘ EA2EA1 EA2 1S‘2S‘ S‘ r 1,EA1, r 2,EA2  Sig(T‘) r 1,EA1, r 2,EA2  Sig(T‘)

32 Laura Elisabeth Hombach32 Umgang von DBMS mit Konfluenz Oracle und DB2: Wenn die Regeln eine totale Ordnung besitzen und die Regelmenge terminiert liegt, Konfluenz vor

33 Laura Elisabeth Hombach33 Zusammenfassung Konfluenz Problem  Unentscheidbar und negativer Einfluss auf aktive DBMS Kommutativität ist nur eine hinreichende Bedingung Bis heute noch keine allgemein-gültige Bedingung gefunden (die nur nicht konfluente Paare ausgibt)

34 Laura Elisabeth Hombach34 Ausblick Implementierung des Konzeptes wünschenswert Kommutativität = beste bekannte Methode

35 Laura Elisabeth Hombach35 Literatur [Weik] T. Weik, „Terminierung und Konfluenz in einer aktiven objekt-orientierten Datenbank“, Seiten , 246 f, infix [Aiken] A.Aiken, J. Widom, J. M. Hellerstein, „Behavior of Database Production Rules: Termination, Confluence, and Observable Determinism“, Seiten 4 – 8, IBM Research, 1992 [Schl] M. Schlesinger, „ALFRED – Konzepte und Prototyp einer aktiven sicht zur Automatisierung von Geschäftsregeln“, Seiten 114 – 116, digital publications [Mahm] Y. Mahmud, „Aktive Datenbanken“, Seiten 29 f, Seminararbeit an der Johann Wolfgang Goethe-Universität Frankfurt am Main, Juni 1998


Herunterladen ppt "Konfluenz in aktiven DB Vortragsreihe zum Thema „Aktive Datenbanken“ des Lehrstuhls für Datenbanken und Informationssysteme der Friedrich-Schiller-Universität."

Ähnliche Präsentationen


Google-Anzeigen