Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen1 Faires Teilen Das „Cake-Cutting-Problem“ Heike Stolle.

Ähnliche Präsentationen


Präsentation zum Thema: "Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen1 Faires Teilen Das „Cake-Cutting-Problem“ Heike Stolle."—  Präsentation transkript:

1 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen1 Faires Teilen Das „Cake-Cutting-Problem“ Heike Stolle

2 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen2 Übersicht Vorgehensweise für 2 Personen Rekursiv mit Optimierung Proportionales Teilen Das Steinhaus-Protokoll Das Banach-Knaster-Protokoll Neidfreies Teilen Das Selfridge-Conway-Protokoll Das Brams-Taylor-Protokoll für 4 Personen Verfahren für 4 Spieler in endlich vielen Schritten

3 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen3 Problemfeld Wie teile ich einen Kuchen unter beliebig vielen Personen so auf, dass ein jeder mit seinem Stück zufrieden und nicht neidisch auf jemand anderen ist (d.h. proportional und neidfrei)? Vielfältige Anwendungen in Politik, Recht etc. Wichtig: Es geht stets um subjektive Einschätzungen, nicht um objektive Gerechtigkeit

4 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen4 Cast AntonBert ConradDetlef

5 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen5 Verfahren für 2 Personen „ich schneide – du wählst“ Anton schneidet und Bert wählt (als Erster) aus Anton muss also „fair“ schneiden, so dass er auch dann noch ein für ihn größtmögliches Stück abbekommt, wenn Bert zuerst ein Stück wählt  Bert ist zufrieden, weil er zuerst wählen darf  Anton ist zufrieden, weil er die Größe der Stücke bestimmen durfte und davon ausgeht, dass beide gleich groß sind

6 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen6 Rekursiv für n ≥ 3 Personen Alle n Personen markieren an dem zu teilenden Kuchen die jeweils subjektiv wahrgenommene 1/n-Grenze C B D A  Conrad ist zufrieden, da er s.E. mindestens 1/n des Kuchens erhalten hat  die anderen n-1 Personen sind auch zufrieden, da Conrad weniger als 1/n bekommen hat

7 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen7 Das gleiche geschieht für n-1 Personen usw., bis noch 2 Personen übrig sind Diese gehen nach dem Prinzip „ich schneide – du wählst“ vor Aufwand: Rekursiv für n ≥ 3 Personen

8 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen8 Rekursiv für n ≥ 3 Personen - optimiert Divide and Conquer C A B D C AC A B DB D

9 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen9 Das Steinhaus-Protokoll Hugo Steinhaus ( ) polnischer Mathematiker, Wissenschaftler der Lemberger Mathematischen Schule entwickelte Steinhaus-Moser-Notation für große Zahlen (Kreisnotation  Notation hoher Potenzen durch geometrische Symbole)

10 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen10 Das Steinhaus-Protokoll (für n=3) Anton schneidet Bert setzt aus, weil er mind. 2 Teile für fair hält Bert kennzeichnet 2 Teile als schlecht ODER SS Fall 1Fall 2

11 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen11 Das Steinhaus-Protokoll (für n=3) Conrad, Bert und Anton greifen in dieser Reihenfolge zu.  Conrad ist zufrieden, weil er als Erster wählen darf  Bert ist zufrieden, weil er mind. 2 Stücke für fair hält und nach Conrad mindestens noch eines davon übrig ist  Anton ist zufrieden, weil er geschnitten hat und davon ausgeht, dass alle drei Stücke gleich groß sind Fall 1 Bert setzt aus, weil er mind. 2 Teile für fair hält

12 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen12 Das Steinhaus-Protokoll (für n=3) SS Fall 2 Bert kennzeichnet 2 Teile als schlecht SS Conrad setzt aus, weil er mind. 2 Stücke für fair hält (ohne Berücksichtigung von Berts Meinung) Conrad kennzeichnet 2 Teile als schlecht (ohne Berücksichtigung von Berts Meinung) ODER Bert, Conrad und Anton greifen in dieser Reihenfolge zu Fall 3

13 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen13 Das Steinhaus-Protokoll (für n=3) Conrad kennzeichnet 2 Teile als schlecht Anton nimmt ein doppelt gekennzeichnetes Stück (dieses finden sowohl Bert als auch Conrad unfair, denken also, es sei kleiner als 1/3) Die beiden anderen Stücke werden vereinigt; Bert und Conrad teilen sich diesen Rest des Kuchens nach dem Prinzip „Ich schneide – du wählst“ (der ihrer Meinung nach ≥2/3 groß ist). SS Fall 3

14 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen14 Das Steinhaus-Protokoll (für n=3) Das Verfahren ist zwar proportional, aber nicht neidfrei. Das heißt, es gibt Fälle, in denen eine Person glaubt, sie habe einen fairen Anteil erhalten, aber eine andere Person sei besser behandelt worden. Bsp.: Wenn Bert die Stücke als 1/2, 1/3 und 1/6 des gesamten Kuchens einschätzt, könnte in seinen Augen Conrad (der zuerst wählen darf) das 1/2-große Stück bekommen, während er selbst nur 1/3 bekommt.  gesucht ist ein proportionales, neidfreies Verfahren für beliebig viele Personen

15 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen15 Das Banach-Knaster- Protokoll Stefan Banach ( ) polnischer Mathematiker, Hauptvertreter der Lemberger Mathematischen Schule Fourier-Reihen zusammen mit Steinhaus Maßtheorie Funktionalanalysis Bronisław Knaster ( ) polnischer Mathematiker, Professor in Lwow und Wroclaw Maßtheorie (Schnitttheorie der Ebene: zweifach zusammenhängende Knaster- Kuratowski-Menge)

16 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen16 Das Banach-Knaster- Protokoll n Personen S 1, S 2, … S n Anton schneidet faires Stück (¼) ab Bert findet Antons Stück zu groß und macht es nach seiner Auffassung fair, indem er es verkleinert. ODER Bert findet Antons Stück fair und setzt aus. S1S1 S2S2 Beispiel: n=4

17 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen17 Das Banach-Knaster- Protokoll S4S4 Conrad hat ausgesetzt, weil er Stück für fair hielt. Das Stück geht an denjenigen, der das Stück als Letzter beschnitten hat, im Beispiel also an Bert. Hätten alle Personen nach S 1 das Stück nicht beschnitten, wäre es an S 1 gegangen. Detlef hält das Stück ebenfalls für fair und setzt aus.

18 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen18 Das Banach-Knaster- Protokoll  Bert ist zufrieden, da er das Stück nach seinen Vorstellungen beschnitten hat. Er scheidet mitsamt seinem Stück aus.  Alle anderen wiederholen das Verfahren mit n-1 Personen und einem Kuchen, der in ihren Augen mind. noch (n-1)/n des ursprünglichen Kuchens ausmacht. Dieses Verfahren funktioniert proportional für beliebig viele Spieler, ist aber auch nicht neidfrei.

19 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen19 Das Selfridge-Conway- Protokoll (für n=3) John Selfridge amerikanischer Mathematiker, University of Illinois und Northern Illinois University forscht auf dem Gebiet der analytischen Zahlentheorie und zum Sierpiński-Problem John Horton Conway englischer Mathematiker, Princeton University analytische Zahlentheorie, Begründer der kombinatorischen Spieltheorie

20 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen20 Das Selfridge-Conway- Protokoll (für n=3) Anton schneidet den Kuchen in 3 (faire) Teile Bert setzt aus, weil er glaubt, dass mind. 2 Stücke gleich groß und nicht kleiner als das 3. seien. Bert beschneidet das größte Stück so, dass der erste Fall eintritt. (Der Rest kommt zur Seite.) ODER

21 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen21 Das Selfridge-Conway- Protokoll (für n=3) Conrad, Bert und Anton nehmen nun in dieser Reihenfolge je ein Stück.  Conrad darf als Erster wählen und ist daher zufrieden.  Wenn Bert vorher ein Stück beschnitten hat, muss er dieses nehmen oder das andere, was er aber für genauso groß hält.  Anton nimmt das übrige Stück und ist damit zufrieden, da er alle drei Stücke für gleich groß oder – falls Bert ein Stück beschnitten hat – seins für eines der größten Stücke hält.

22 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen22 Das Selfridge-Conway- Protokoll (für n=3) Wenn Bert die Aufteilung von Anton im zweiten Schritt für fair hielt, gibt es keinen Rest und wir sind fertig. Wenn nicht, muss noch der Rest aufgeteilt werden. Die Person, die nicht das beschnittene Stück aus der Vorrunde genommen hat (also entweder Bert oder Conrad), ernennen wir zum Schneider, die andere ist der Nicht- Schneider.

23 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen23 Das Selfridge-Conway- Protokoll (für n=3) Der Schneider darf den Rest des Kuchens in 3 für ihn gleich große Häufchen teilen. Anton hat dem Nicht-Schneider (der das beschnittene Stück bekommen hat) ggü. einen „uneinholbaren Vorsprung“: Das beschnittene Stück ist in Antons Augen auf jeden Fall kleiner als sein eigenes, so dass er nicht neidisch sein kann, auch wenn der Nicht-Schneider den gesamten Rest bekommt.

24 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen24 Das Selfridge-Conway- Protokoll (für n=3) Nicht-Schneider, Anton und Schneider greifen in dieser Reihenfolge zu.  Der Nicht-Schneider wählt zuerst und kann daher nicht neidisch sein.  Anton ist wegen seines uneinholbaren Vorsprungs nicht neidisch auf den Nicht-Schneider. Da er vor dem Schneider wählen darf, sieht er sich auch diesem ggü. im Vorteil.  Der Schneider kann auch nicht neidisch sein, da er den Rest aufgeteilt hat.

25 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen25 Das Selfridge-Conway- Protokoll (für n=3) Das Verfahren ist proportional und neidfrei, jedoch nur auf 3 Personen anzuwenden.

26 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen26 Das Brams-Taylor-Protokoll (für n=4) Steven Brams Politikwissenschaftler an der New York University Spieltheorie, Neue politische Ökonomie (politische Strukturen werden auf Basis neoklassischer Wirtschaftstheorien erklärt) Alan Taylor amerikanischer Mathematiker am Union College in Schenectady Mengenlehre, mathematische Politikwissenschaft, Faires Teilen

27 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen27 Das Brams-Taylor-Protokoll (für n=4) Anton schneidet den Kuchen in 5 Teile Bert beschneidet, falls nötig, ein oder zwei Stücke so, dass 3 gleiche größte Stücke entstehen (der Rest kommt auf die Seite). Conrad beschneidet, falls nötig, ein Stück so, dass zwei gleich größte Stücke entstehen. Detlef, Conrad, Bert und Anton greifen in dieser Reihenfolge zu.

28 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen28 Das Brams-Taylor-Protokoll (für n=4)  Wenn Bert Stücke beschnitten hat, muss er eins davon nehmen (wenn noch verfügbar).  Gleiches gilt für Conrad.  Die abgeschnittenen Teile werden mit dem fünften Stück vereint, auf das das Verfahren erneut angewandt wird.  Das Verfahren ist proportional, neidfrei, für n=4 Personen, aber nicht terminiert.

29 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen29 Faires Teilen in endlich vielen Schritten (für n=4) William S. Zwicker amerikanischer Mathematiker am Union College in Schenectady Mengenlehre,Spieltheorie, Faires Teilen Fred Galvin amerikanischer Mathematiker am Union College in Schenectady Mengenlehre, Kombinatorik Protokoll entwickelt zusammen mit Alan Taylor

30 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen30 Faires Teilen in endlich vielen Schritten (für n=4) Bert teilt den Kuchen in 4 Stücke und gibt jedem (einschließlich sich selbst) eines. Anton, Conrad und Detlef werden der Reihe nach gefragt, ob sie dieser Verteilung widersprechen (was sie tun, wenn sie wegen eines anderen Stückes neidisch sind). Widerspricht keiner, ist die Aufteilung beendet.

31 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen31 Faires Teilen in endlich vielen Schritten (für n=4) AB Anton hat B, will aber A: a>b Anton benennt eine ganze Zahl p≥10 p soll folgende Eigenschaft haben: Wenn A irgendwie in p Teile zerteilt wird, bevorzugt Anton A gegenüber B selbst dann, wenn die 7 kleinsten Teile von A weggenommen werden. Wert(A)= aWert(B)= b Das kann Anton erreichen, wenn

32 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen32 Faires Teilen in endlich vielen Schritten (für n=4) Bert teilt A und B in jeweils p Stücke auf, die er für gleich groß hält. Anton wählt die 3 kleinsten Stücke von B  S 1, S 2 und S 3. Anton wählt außerdem die 3 größten Stücke von A (wenn er sie für echt größer als das größte S-Stück hält) oder beschneidet 2 Stücke, so dass dieser Fall eintritt.  T 1, T 2 und T 3

33 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen33 Faires Teilen in endlich vielen Schritten (für n=4) Conrad nimmt die 6 S- und T-Stücke - und setzt aus, wenn er die beiden größten unter ihnen für gleich groß hält, - oder er beschneidet eines, um diesen Zustand herbeizuführen.

34 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen34 Faires Teilen in endlich vielen Schritten (für n=4) Detlef, Conrad, Bert und Anton nehmen in dieser Reihenfolge nun jeweils eines der 6 Stücke. Conrad muss das Stück nehmen, dass er vorher beschnitten hat (wenn es noch verfügbar ist). Bert muss ein S-Stück nehmen. Anton muss ein T-Stück nehmen.

35 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen35 Faires Teilen in endlich vielen Schritten (für n=4) Bisher ist die Zuordnung neidfrei Anton hält sein Stück für echt größer als Berts, um den Betrag x. CD Jedoch ist ein erheblicher Rest übrig:

36 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen36 Faires Teilen in endlich vielen Schritten (für n=4) Anton nennt eine ganze Zahl q, so dass Dies ist nötig, um die folgende Sequenzwiederholung zu begrenzen.

37 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen37 Faires Teilen in endlich vielen Schritten (für n=4) Anton teilt die Überbleibsel in 5 Stücke Bert beschneidet ggf. bis zu 2 Stücke, um 3 gleich große größte Stücke zu erhalten. Conrad beschneidet ggf. eines der Stücke, um 2 gleich große größte Stücke zu erhalten. Detlef, Conrad, Bert und Anton greifen in dieser Reihenfolge zu.

38 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen38 Faires Teilen in endlich vielen Schritten (für n=4) Dieser Vorgang der Resteverteilung wird noch (q-1) mal wiederholt, immer wieder mit den Überbleibseln der Vorrunde. Nun liegt eine neidfreie Zuordnung vor. Anton hat einen uneinholbaren Vorsprung ggü. Bert: Er hält seinen Anteil für größer als Berts plus aller Reste, da er selbst ein größtes T-Stück von dem Stück B und Bert „nur“ ein kleinstes S-Stück von Stück A mit b>a bekommen hat.

39 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen39 Faires Teilen in endlich vielen Schritten (für n=4) Wir notieren das Paar (Anton, Bert) als ersten Eintrag in eine Liste, in der wir jedes Paar festhalten, dessen erstgenannte Person einen uneinholbaren Vorsprung ggü. der zweitgenannten haben. Es kann vorkommen, dass sowohl (Anton, Bert) als auch (Bert, Anton) in der Liste stehen.

40 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen40 Faires Teilen in endlich vielen Schritten (für n=4) Bert teilt die Überbleibsel in 12 gleiche Teile. Jeder der anderen drei erklärt sich für einen Zustimmer, wenn er alle diese Stücke für gleich groß hält, sonst für einen Ablehner. (Bert ist automatisch ein Zustimmer). Wenn jeder Ablehner lt. der Liste einen uneinholbaren Vorsprung hat, werden die 12 Stücke gleichmäßig an die Zustimmer verteilt. Dann ist das Verfahren beendet.

41 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen41 Faires Teilen in endlich vielen Schritten (für n=4) Wenn die Ablehner nicht durchgängig uneinholbare Vorsprünge haben, wählen wir das erste Paar aus Ablehner und Zustimmer, das nicht in der Liste ist, und beginnen wieder mit dem Vergleich vom Anfang. Der Zustimmer nimmt die Rolle des Bert, der Ablehner die Rolle des Anton an, diskutiert wird der Rest des Kuchens. Das Verfahren endet dann spätestens nach 11 Runden. Dann steht jedes denkbare Paar auf der Liste, d.h. jede Person hat ggü. jeder anderen uneinholbare Vorsprünge.

42 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen42 Faires Teilen in endlich vielen Schritten (für n=4) Dieses bereits für n=4 Personen komplizierte Verfahren ist neidfrei und terminiert. (Ein vollständiger Beweis dafür, dass das Verfahren auch bei n<4 terminiert, findet sich in der Originalquelle von Brams und Taylor.) Alle Algorithmen funktionieren für beliebig teilbare Güter wie Kuchen. Schwierig wird Faires Teilen bei Besitzgütern bspw. nach einer Scheidung. Außerdem eignen sie sich nicht für Konfliktlösungen, bei denen ein Partner dem anderen moralisch überlegen ist.

43 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen43 Quellen Stewart, Ian (2003): Neidfreies Teilen. In: Spektrum der Wissenschaft, Dossier Mathematische Unterhaltungen II. Heft 02/03. S Seidel, Raimund (2008): Eine Weihnachtsstollengeschichte. In: Vöcking, Helmut et al. (Hrsg.): Taschenbuch der Algorithmen. Springer: Berlin. S Brams, Steven/ Taylor, Alan (1995): An Envy-Free Cake Division Protocol. In: The American Mathematical Monthly. Vol. 102/1. pp [Zugriff: ] [Zugriff: ]

44 Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen44 DANKE!


Herunterladen ppt "Freie Universität Berlin | SoSe 2008 | Seminar über Algorithmen1 Faires Teilen Das „Cake-Cutting-Problem“ Heike Stolle."

Ähnliche Präsentationen


Google-Anzeigen