Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

„Topologie“ - Wiederholung der letzten Stunde

Ähnliche Präsentationen


Präsentation zum Thema: "„Topologie“ - Wiederholung der letzten Stunde"—  Präsentation transkript:

1 „Topologie“ - Wiederholung der letzten Stunde

2 Punktmengentopologie
Ausgangspunkt: Eine Menge S und die Menge aller Teilmengen von S (die Potenzmenge P(S) ) Ein topologischer Raum besteht aus einer Menge S und einer Menge von Teilmengen von S (nicht notwendig aller), den Nachbarschaften. Dabei gilt: T1: Jeder Punkt x  S liegt in einer Nachbarschaft von S. T2: Der Durchschnitt zweier Nachbarschaften eine Punktes x  S enthält eine Nachbarschaft von x. Nachbarschaft Punkt

3 Beispiele Die offene Kreisscheibe in der euklidischen Ebene
Punkt Die offene Kreisscheibe in der euklidischen Ebene Menge aller Punkte, die durch einen Kreis begrenzt werden, aber nichtauf demselben liegen punktierte Linie: offen durchgezogene Linie: geschlossen Beachte: T2 ist erfüllt Der Durchschnitt zweier Nachbarschaften eines x  S enthält eine Nachbarschaft von x. Offene Kreisscheibe

4 Weitere ( teilweise „pathologische“) Beispiele
Die diskrete Topologie von S: S und die Menge aller Teilmengen von S die kleinste Nachbarschaft von x ist {x} („Einzimmerappartment“, daher der Name „diskret“) Die indiskrete Topologie S selbst ist die einzige Nachbarschaft von S die offenen Intervalle (a,b) in der Menge S der reellen Zahlen als Nachbarschaften (S = R) die offenen Kugeln in S = R3

5 Nähe, Offen + Geschlossen
Im folgenden stets: S sei ein topologischer Raum, X  S, x  S x ist nahe an X, falls jede Nachbarschaft von x einen Punkt von X enthält. X ist offen, wenn jeder Punkt y  X eine Nachbarschaft hat, die ganz in X ist. X ist geschlossen, wenn X alle nahen Punkte enthält. C = {(x,y) | x2 + y2 < 1} sei die offene Kreisscheibe um den Ursprung mit Radius 1. Nicht nahe nahe geschlossen offen

6 Der Rand oder die Grenze
Der Abschluß einer Teilmenge X  S ist die Vereinigung von X mit allen nahen Punkten. Notation: X¯ Komplement: X‘ Das Innere von X ist die Menge aller Punkte von X, die nicht zugleich nahe Punkte von X‘ sind. Notation: X° Die Grenze (oder der Rand) von X ist die Menge aller Punkte, die nahe zu X und zugleich zu X‘ sind. Notation: X Es gilt: X = X¯ \ X° (mengentheor. Diff.) Der „Rand“ einer offenen Kreisscheibe ist der Kreis (wie zu erwarten)

7 Beispiele Das Innere von S Die Menge S Rand von S Abschluß von S

8 Topologische Eigenschaften
Eine topologische Transfor-mation (Homeomorphismus) oder eine elastische Verformung bildet Nachbar-schaften auf Nachbarschaften ab. Ferner ist jede Nachbarschaft Bild eine Nachbarschaft. Topologische Eigenschaften sind die Invarianten topologischer Abbildungen. Euklidische Topologie äquivalent nicht äquivalent Zeugen

9 Zusammenhang (I) Ein Punktmenge X heißt zusammenhängend, wenn für jede Partition (disjunkte Zerlegung) in nichtleere Teilmengen A und B gilt: Entweder enthält A einen Punkt nahe an B oder umgekehrt. nicht zusammenängend zusammen hängend wichtiger Punkt für den schwierigen Fall „A oberer Kreis, B unterer Kreis“

10 elastische Verformung
Zusammenhang (II) Ein Pfad ist homeomorphes Bild (entsteht durch elastische Verformung aus) einer geraden Kante. Eine Menge X eines topologischen Raumes heißt (pfad-) zusammenhängend, wenn jedes Paar von Punkten durch einen Pfad verbunden werden kann, der ganz in X liegt. (Für Flächen mit „vernünfti-gen“ Grenzen äquivalent zu Definition auf voriger Folie) elastische Verformung Pfadzusammenhang

11 Regularisierung X sei eine Punktmenge der Euklidischen Ebene mit der Standardtopologie (offene Kreisscheiben). Die Regularisierung von X ist der Abschluß des Inneren von X reg(X) = X°¯ Ergebnis ist ein rein flächenhaftes Objekt (ohne Beimengung von Punkten und Linien, die nicht zur Flächenbildung beitragen) X Abschluß Inneres reg(X)

12 Tesselation Eine Tesselation ist eine vollständige und überlappungsfreie Zerlegung der euklidischen Ebene in flächenhafte Objekte (Maschen). vollständig: jeder Punkt ist Element mindestens einer Masche überlappungsfrei: kein Punkt liegt im Inneren zweier Maschen

13 Landkarten Landkarten sind Tesselationen mit folgenden Eigenschaften:
a) jede Masche ist der geschlossenen Kreisscheibe topologisch äquivalent b) die Aggregation aller inneren Maschen ist der geschlossenen Kreisscheibe topologisch äquivalent Beachte: zu jeder Landkarte gehört eine unbeschränkte Masche „Außen“ - die einzige Masche, die nicht der geschlossenen Kreis-scheibe äquivalent ist

14 Einschränkungen Vorher angepasste Gliederung für jedes Thema 1 Folie
Um die Mathematik zu vereinfachen, sind in Landkarten folgende Fälle zunächst nicht vorgesehen: Inseln (z.B. Berlin in Brandenburg) Auseinander liegende „Kontinente“: die Aggregation Grün ist nicht zusammenhängend Mehrere Kontinente, die sich in genau einem Punkt berühren Isthmen: linienhafte Verbindungen zwischen auseinander liegenden Maschen Kontinenten, z.B. Hindenburgdamm/Sylt Hinweis: Blau ist Außen, Grün ist Innen Übung: Zeigen Sie die Verstöße gegen a) und b) unter Verwendung der Definition der topologischen Äquivalenz. Vorher angepasste Gliederung für jedes Thema 1 Folie hier nur Stichpunkte

15 Topologische Beziehungen in Landkarten
Adjazenz von Knoten und Kanten Adjazenz von Kanten und Maschen Adjazenz von Kanten und Kanten Adjazenz von Maschen und Maschen

16 Geometreisch-Topologische Datenstrukturen für Landkarten
Problem: Die Topologie kann im Prinzip aus der Geometrie hergeleitet werden Option: „Wieviel“ Topologie wird explizit repräsentiert?

17 Repräsentationen von Landkarten
1. Spaghetti-Struktur - nur Geometrie - keine Topologie

18 Spaghetti Flächen: x y A B C A: 2.0 0.0 5.0 1.0 7.0 3.0 5.0 4.0
B: C: x y ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) A B C

19 UML-Diagramm für die Spaghetti-Struktur
Paare von Koordinaten geordnete Folge von Koordinaten [0,0,1,0,1,1,0,1]  [0,0,1,1,0,1,1,0]

20 Spaghetti (Komposition von Punktobjekten)
Flächen: Spaghetti (Komposition von Punktobjekten) A: P1 P2 P3a P4a P5a B: P4b P3b P6 P7b C: P4c P7b P8 P9 P5c P8 P7b P7c P6 B C P4c P4b Punkte: P4a P9 P3b P P P3a P3b P4a P4b P4c P3a A P5c P2 P5a P1

21 UML-Diagramm für Spaghetti-Struktur mit Punkt-Objekten
Masche Komposition 1..1 n {geordnet} Punkt

22 Vor- und Nachteile 2.0, 5.0 P1 3.0, 6.0 P2 P1 P3 P5 7.0, 2.0 P4
Vorteile: bequem für Flächenberechnung gut für Graphikprogramme Zeichnen von Polygonen Nachteile: Topologie nur implizit fehleranfällig wenig änderungsfreundlich Beispiel: Korrektur von Punktkoordinaten P1 P2 P1 P3 P5 P4

23 Typischer Fehlerfall für Spaghetti: Änderung der Koordinaten eines gemeinsamen Punktes
vorher nachher

24 Punktobjekte ohne Redundanz
Flächen: A: P1 P2 P3 P4 P5 B: P4 P3 P6 P7 C: P4 P7 P8 P9 P5 P8 P7 P6 B C Punkte: P4 P P P P P P P9 P3 A P5 P2 P1

25 UML-Diagramm für Spaghetti-Struktur mit Punkt-Objekten ohne Redundanz
Masche Punkt n 1..n {geordnet} Beachte: Redundanzfreiheit kann durch dies UML-Diagramm nicht erzwungen werden. Aggregation

26 Knoten-Maschen-Struktur
Kante End- knoten linke Masche Anfangs- knoten P1 E6 E11 P2 P3 P6 P7 P8 P9 A B C P5 P4 E1 E2 E3 E4 E5 E7 E8 E9 E10 Außen rechte Masche E1 P1 P2 A Außen E2 P2 P3 A Außen E3 P3 P4 A B E4 P4 P5 A C E5 P5 P1 A Außen E6 P3 P6 B Außen Kanten: Knoten: P P

27 UML-Diagramm für die Knoten- und Kantenstruktur
Masche 2 begrenzt 3..* neu Kante Topologie explizit 2..* begrenzt 2 Knoten 1 Redundanzfreiheit wird erzwungen Geometrie 1 Punkt

28 Vor- und Nachteile der Knoten- und Kanten-Struktur
Vorteile: Geometrie ist redundanzfrei Topologie ist explizit bei Änderungen können Fehler leichter vermieden werden Nachteil der Kantenumring ist nicht direkt gegeben, sondern muß berechnet werden Lösung: Kanten mit Flügeln


Herunterladen ppt "„Topologie“ - Wiederholung der letzten Stunde"

Ähnliche Präsentationen


Google-Anzeigen