Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-1 Sequenzvergleiche Sequenzvergleiche.

Ähnliche Präsentationen


Präsentation zum Thema: "Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-1 Sequenzvergleiche Sequenzvergleiche."—  Präsentation transkript:

1 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-1 Sequenzvergleiche Sequenzvergleiche

2 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-2 Sequenzvergleiche Gliederung  Überblick  Dotplot  Maße für Sequenzähnlichkeit  Sequenzalignments  Bedeutung des Alignments  Multiple Alignments

3 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-3 Sequenzvergleiche Einführung (I)  gegeben zwei Sequenzen  gesucht: -Ähnlichkeit quantitativ erfassen -Entsprechungen zwischen einzelnen Bausteinen beider Sequenzen feststellen -Gesetzmäßigkeiten der Konservierung und Variabilität beobachten -Rückschlüsse auf entwicklungsgeschichtliche Verwandtschaftsverhältnisse ziehen  Anwendung: Annotation von Genomen -> Zuordnung von Funktion und Struktur für möglichst viele Gene

4 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-4 Sequenzvergleiche Einführung (II)  Wie kann man ein quantitatives Maß für Sequenzähnlichkeit definieren? -> Definition von Entsprechungen  Sequenz-Alignment ist der Nachweis solcher Entsprechungen zwischen Sequenzbausteinen -> DAS GRUNDLEGENDE WERKZEUG der BIOINFORMATIK!  Zuordnung von Entsprechungen, bei der Reihenfolge der Bausteine erhalten bleibt, ist ein Alignment  Lücken sind dabei erlaubt!  Beispiel: Folge 1 = a b c d e Folge 2 = a c d e f Alignment: a b c d e – a – c d e f

5 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-5 Sequenzvergleiche DOTPLOT (I)  Dotplot = Punkteschema  Ähnlichkeit von zwei Sequenzen  Zusammenhang zu Alignments nicht offensichtlich  Tabelle oder Matrix: -Zeilen entsprechen Bausteine der ersten Sequenz -Spalten entsprechen Bausteine der zweiten Sequenz  wenn Übereinstimmung dann Füllen der Felder  Abschnitte mit ähnlichen Bausteinen werden als Diagonalen von links oben (Nordwest) nach rechts unten (Südost) sichtbar  Beispiel (engl. Proteinkristallografin): -D O R O T H Y C R O W F O O T H O D G K I N -D O R O T H Y H O D G K I N

6 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-6 Sequenzvergleiche DOTPLOT (II)

7 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-7 Sequenzvergleiche DOTPLOT (III) Repetitive Sequenz: A B R A C A D A B R A C A D A B R A

8 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-8 Sequenzvergleiche DOTPLOT (IV) Pallindromische Sequenz: M A X I S T A Y A W A Y A T S I X A M

9 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-9 Sequenzvergleiche JDotter: A Dot Matrix Plotter for Java

10 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-10 Sequenzvergleiche DOTPLOT und Alignment D O R O T H Y C R O W F O O T H O D G K I N D O R O T H Y H O D G K I N Jeder Pfad von links oben Nach rechts unten durch den Dotplot läuft durch eine Abfolge von Zellen, und jede dieser Zellen repräsentiert zwei Positionen- eine aus der Zeile, die andere aus der Spalte -, die einander im Alignment entsprechen, oder aber sie stellt eine Lücke in einer der Sequenzen dar!

11 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-11 Sequenzvergleiche Maße für Sequenzähnlichkeit (I)  Stand: Dotplots und „Alignments nach Augenmaß“  Gesucht: quantitative Maße für Ähnlichkeiten  Beispiele: -Hamming-Distance: zwischen zwei per Definition gleich langen Sequenzen, ist die Zahl der Positionen mit unterschiedlichen Zeichen. agtc cgta Hamming-Abstand = 2 -Levenshtein-Distance (Edit Distance): zwischen zwei Sequenzen (nicht unbedingt gleich lang), ist die Mindestzahl von Editieroperationen, die erforderlich sind, um eine Kette in die andere umzuwandeln. ag-tcc cgctca Levenshtein-Abstand = 3 Editieroperationen: Deletion, Insertion oder Punktmutation in einer Sequence Bestimmte Abfolge von Editieroperationen führt zu einem einzigen Alignment, aber umgekehrt gilt dieser Zusammenhang nicht!

12 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-12 Sequenzvergleiche Maße für Sequenzähnlichkeit (II)  Problem: bestimmte Abweichungen unterschiedlich wahrscheinlich: -Ähnliche Aminosäuren (physikalische, chemische Eigenschaften) häufiger ausgetauscht  verschiedene Editieroperationen bekommen unterschiedliche Wichtung  Computerprogramm ermittelt nicht nur Mindest- Editierabstand sondern auch optimales Alignment  Wichtungen für Einzelschritte addieren und so Gesamt-SCORE ermitteln  Bei Substitutionen wird Wert der Mutation addiert.  Bei horizontalen und vertikalen Zügen wird „Lückenstrafe“ (gap penalty) gezählt.

13 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-13 Sequenzvergleiche Maße für Sequenzähnlichkeit: Scoring-Schemata (I)  entspricht einem Bewertungssystem  Handling von Substitutionen, Insertionen und Deletionen  Sequenz 1 Insertion -> Sequenz 2 Deletion und umgekehrt  Gewichtung der Deletion (Lücken in Sequenz) hängt von Länge ab  Hamming und Leveshtein -> Maße für Unähnlichkeit!!! geringer Abstand->ähnlich großer Abstand->unähnlich  Scores in Molekularbiologie sind Maß für Sequenzähnlichkeit: ähnliche Sequenz->hoher Score unähnliche Sequenz->niedriger Score  Algorithmen zum Finden des optimalen Alignments suchen entweder nach geringem Wert für Unähnlichkeit oder nach möglichst hohem Score für Ähnlichkeit!  Achtung Unterschied zwischen Homologie und Ähnlichkeit beachten!!!

14 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-14 Sequenzvergleiche Maße für Sequenzähnlichkeit: Scoring-Schemata (II)  bei Nukleinsäuresequenzen häufig Verwendung eines einfaches Schemas für Substitutionen: -Übereinstimmung:+1 -Fehlpaarung: -1  komplizierte Schemata berücksichtigen folgende Tatsache: -Transitionen häufiger als Transversionen -Transition: Purin Purin, Pyrimidin Pyrimidin, z. B. a g, t c -Transversion: Purin Pyrimidin, (a, g) (t, c) -Beispiel: a t g c a t g c

15 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-15 Sequenzvergleiche Maße für Sequenzähnlichkeit: Scoring-Schemata (III)  bei Aminosäuresequenzen verschieden Bewertungssysteme: -ähnliche physikalische und chemische Eigenschaften (+1 und -1) -lernen der Schemata (M. O. Dayhoff): statistische Austauschhäufigkeit in bekannten Sequenzen werden ausgenutzt -> heute veraltet -heute Nutzung neue Sequenzdaten und Mutationsstatistiken -neue Matrizen: PAM (Percent Accepted Mutation): 2 Sequenzen mit PAM 1 zu 99% identische Sequenzen BLOSUM (BLOcks SUbstitution Matrix) von S. Henikoff und J. G. Henikoff  Basis BLOCKS-Datenbank für Protein-Sequenaligments  für Abschnitte sehr ähnlicher Proteine, bei denen Alignment ohne Lücken möglich, wird Verhältnis zwischen Zahl beobachteter Aminosäurenpaare an jeder einzelnen Position und der Zahl solcher Paare die man aufgrund der Gesamthäufigkeit der Aminosäuren erwartet, berechnet  Verhältnis logarithmisch angeben  zur Vermeidung der Übergewichtung eng verwandter Sequenzen Ersetzung der Proteingruppen über einem bestimmten Schwellenwert durch einen einzigen Vertreter oder durch gewichteten Mittelwert  Beispiel Schwellwert 62 % -> BLOSUM62

16 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-16 Sequenzvergleiche Beispiel: BLOSUM62 Matrix AlaA ArgR AsnN AspD CysC GlnQ GluE GlyG HisH IleI LeuL LysK MetM PheF ProP SerS ThrT TrpW TyrY ValV

17 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-17 Sequenzvergleiche Bewertung von Insertionen und Deletionen (Lückengewichtung)  neben Substitutionsmatrizen weiteres Kriterium erforderlich  Welche Bedeutung haben Insertionen und Deletionen im Verhältnis zu Substitutionen?  Beispiele: aaagaaa aaa-aaa Erweiterung von Lücken: aaaggggaaa aaa----aaa  Empfehlung von CLUSTAL-W für DNA-Sequenzen: -+1 für Übereinstimmung - 0 für Unterschied -Strafe von 10 für neu eingeführte Lücken -sowie 0,1 für die Lückenerweiterung um einen Baustein  Empfehlung von CLUSTAL-W für AA-Sequenzen: -BLOSUM-Matrix für Substitutionen -Strafe von 11 für neu eingeführte Lücken -sowie 1 für die Lückenerweiterung um einen Baustein

18 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-18 Sequenzvergleiche Berechnung des Alignements von zwei Sequenzen  Voraussetzung: 2 Sequenzen, Scoring-Schema (Substitutionsmatrix + Gap Penalty)  Gesucht: Alignment mit möglichst hohem Score  Beispiel für Lösung: Dynamic Programing -Verfahren für garantiert zu einem globalen Optimum: bestes Alignment mit höchstem Score wird gefunden -schlecht: viele Alignments haben gleichen Optimalwert! Frage: Wie vergleichen -> Struktur! -Rechenzeit: n x m Sequenzen alignen -> Zeit ist proportional zu n x m -> Effizienzproblem  Abwandlungen des Verfahrens: Needleman & Wunsch oder Smith & Waterman (Verweis auf Literatur)  Näherungsverfahren

19 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-19 Sequenzvergleiche Globales vs. Lokales Alignment

20 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-20 Sequenzvergleiche BLAST I  BLAST (Altschul et al. 1990) = Basic Local Alignment Search Tool  BLAST berechnet zu einem Datenbankstring T und Anfragestring W alle Segmentpaare, die sich mit einem Score mit einer Mindestgröße alignieren lassen.  Alle diese Segmentpaare lassen sich effizient ermitteln, wenngleich dies algorithmisch nicht völlig trivial ist.  Sie werden „hot-spots“ oder „hits“ genannt.  Nun versucht BLAST, durch Ausdehnen der hot-spots an den beiden Enden sog. lokal maximale Segmentpaare zu erzeugen.  Dabei heißt ein Segmentpaar lokal maximal, falls es weder durch Verlängern um jeweils einen Buchstaben an einem Ende noch durch Verkürzen um jeweils einen Buchstaben an einem Ende möglich ist, den Score zu vergrößern.

21 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-21 Sequenzvergleiche BLAST II  Beispielsweise wäre folgendes (hell- und dunkelblau gezeichnete) Segmentpaar (bei einer einfachen Editier-Scoringfunktion) lokal maximal:  Sowohl Verlängern wie Verkürzen würde den Score reduzieren!  Das lokal maximale Segmentpaar aus dem (dunkelblau gezeichneten) „hot-spot“ AGT ist durch Verlängern hervor gegangen.  Damit wird klar, dass bei diesem Vorgang zeitweise eine Verschlechterung des Scores hingenommen werden musste.  BLAST toleriert solche zeitweiligen Verschlechterungen, aber nur bis zu einem gewissen Maß, das vom bislang schon erreichten besten Score und Voreinstellungen abhängt.  Lokal maximale Segmentpaare werden sodann zu größeren lokalen Alignments kombiniert; hierbei ergeben sich nun auch InDels in den Alignments.

22 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-22 Sequenzvergleiche Verschiedene BLAST-Verfahren

23 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-23 Sequenzvergleiche Beispiel zum BLASTen  Eingabe: menschliches Calmodulin: MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMK DTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK  BLASTp gegen eine Protein-Datenbank z.B. SWISS-PROT  Ergebnis?  Treffer bei Calmodulin der Gerste: >sp|P13565|CALM_HORVU|D82AB985CC12833C (CAM..)Calmodulin.[Hordeum vulgare] Length = 148 Score = 274 bits (701), Expect = 2e-73 Identities = 134/148 (90%), Positives = 144/148 (96%) Query: 2 ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGN ADQLT++QIAEFKEAFSLFDKDGDG ITTKELGTVMRSLGQNPTEAELQDMINEVDADGN Sbjct: 1 ADQLTDDQIAEFKEAFSLFDKDGDGCITTKELGTVMRSLGQNPTEAELQDMINEVDADGN...sp|P13565|CALM_HORVU|D82AB985CC12833C ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGN ADQLTDDQIAEFKEAFSLFDKDGDGCITTKELGTVMRSLGQNPTEAELQDMINEVDADGN

24 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-24 Sequenzvergleiche Gersten-Calmodulin  „Entdeckung“ Ende der 80er Jahre (10 Jahre später als menschliches Calmodulin)  wahrscheinlich Erkenntnis durch in silico Biologie  Grund ist große Übereinstimmung in der Aminosäure-Sequenz  durch unterschiedlichen Codon-Usage ist Ähnlichkeit auf Nukleotid-Sequenz-Ebene nicht so groß

25 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-25 Sequenzvergleiche Detailliertes Beispiel für BLAST-Output  Input im FASTA-Format: >HO03H10S CCATCACCAAAGGTGGCCCAAGAGAGCCATGGCATGATATCCATTCACGATTG GAAGGTCCAATTGCCTGGGATGTTCTTTACAATTNCGAGCNCAGATGGANAAA GCAGGGTGGCANANATCTTCTCGTGCAGCTCAGGGATCTCTCTGACATAATTA TCCCCCCATCTCCCGTCATGTTNCCAGAGGACAGAGATACATGGAATGTCCAG CTCTTCAGATCTATTGATGGTGGTGCTGCTTTTGGCTTCCCTGACACTCCCGA GGAAGCTGCCAGGGCTGGGCTTGTAAGTGGAAAGGATCAAATCATTGACAGGA GCATCCAGNATGCATACATCAATGCCATTCGGCGGGCGAAGGACTTTCATCTA CATTGAGAACCAGTACTTCCTTTGG  Blast-Programm: BLASTX  Ziel - “Datenbank“: NRPEP  vollständiges – Resultat: Übung

26 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-26 Sequenzvergleiche Bedeutung des Alignments I  Ähnlichkeit festgestellt -> neue Frage: Zufall oder Signifikanz  bei Münzwurf Wahrscheinlichkeit eines Treffers leicht berechenbar  schwieriger in unserem Fall, wenn es um Sequenzen geht!!!  praktische Lösung des Problems: -Ist die Gewichtung des tatsächlich beobachteten Alignments nicht größer als man es nach zufälliger Umstellung der Sequenz erwartet, hat man es wahrscheinlich mit einem Zufallsergebnis zu tun! -Sequenz kann viele Male nach Zufallsprinzip verändert werden -danach Alignment durchführen, Scores sammeln und Ergebnis analysieren -wenn Zufallssequenzen gleichen Score ergeben ist ursprüngliches Alignment nicht aussagekräftig

27 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-27 Sequenzvergleiche Bedeutung des Alignments II  Notwendigkeit der Definition von Maßen für Güte eines Alignments 1. Möglichkeit: Z-Score  Z-Score ist ein Maß dafür, wie ungewöhnlich oder originell eine Übereinstimmung ist, gemessen am Mittelwert und der Standardabweichung für die Scores der gesamten Population.  für Alignment mit Score S gilt:  Beispiel: Z-Score = 0 -> beobachtete Ähnlichkeit ist nicht größer als im Durchschnitt der Kontrollpopulation und kann demnach durch „Zufall“ entstanden sein  je höher Z-Score, desto höher Wahrscheinlichkeit das Alignment kein Zufallsprodukt  Erfahrung Z-Score  5 -> Signifikanz

28 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-28 Sequenzvergleiche Bedeutung des Alignments III 2. Möglichkeit: P-Wert  P ist Wahrscheinlichkeit, dass das Alignment nicht besser als ein Zufallsprodukt ist.  Beziehung zwischen Z und P abhängig von der Verteilung der Scores in der Kontrollpopulation, entspricht aber nicht der Normalverteilung  Richtlinie für die Interpretation von P-Werten: P  genaue Übereinstimmung P zwischen und nahezu identische Sequenzen, z. B. Allele oder SNPs P zwischen und eng verwandte Sequenzen, Homologie gesichert P zwischen und in der Regel entfernte Verwandte P > Ähnlichkeit vermutlich nicht signifikant

29 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-29 Sequenzvergleiche Bedeutung des Alignments III 3. Möglichkeit: E-Wert  E ist die voraussichtliche Zahl der Sequenzen, die den gleichen oder besseren Z-Wert liefern, wenn die Datenbank mit einer Zufallssequenz durchsucht wird.  E ist Produkt aus P und der Größe der durchsuchten Datenbank  -> E abhängig von der Größe der Datenbank  -> P nicht abhängig von der Größe der Datenbank  P liegt immer zwischen 0 und 1  E liegt zwischen 0 und Gesamtzahl der Sequenzen in der Datenbank  Richtlinie für die Interpretation von E-Werten: E  0,02Sequenzen vermutlich homolog E zwischen 0,02 und 1Homologie ist nicht auszuschließen E > 1Es ist damit zu rechnen, dass diese „gute“ Übereinstimmung reiner Zufall ist Achtung: Statistik liefert nur Anhaltspunkte, ist aber kein Ersatz für vernünftiges Nachdenken über die Ergebnisse und für die weitere Analyse derer, die viel versprechend aussehen!!!

30 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-30 Sequenzvergleiche Multiple Alignments Motivation: “The Holy Grail” “Pairwise alignment whispers multiple alignment shouts out loud”  im Anschluss: kurzer Überblick anschließend Präsentation anhand eines speziellen Verfahrens

31 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-31 Sequenzvergleiche Multiple Alignments I : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

32 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-32 Sequenzvergleiche Multiple Alignments II : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

33 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-33 Sequenzvergleiche Multiple Alignments III : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

34 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-34 Sequenzvergleiche Multiple Alignments IV : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

35 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-35 Sequenzvergleiche Multiple Alignments V : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

36 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-36 Sequenzvergleiche Multiple Alignments VI : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

37 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-37 Sequenzvergleiche Multiple Alignments VII : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

38 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-38 Sequenzvergleiche Multiple Alignments VIII : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

39 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-39 Sequenzvergleiche Multiple Alignments IX : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

40 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-40 Sequenzvergleiche Multiple Alignments X : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

41 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-41 Sequenzvergleiche Multiple Alignments XI : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

42 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-42 Sequenzvergleiche Multiple Alignments XII : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

43 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-43 Sequenzvergleiche Multiple Alignments XIII : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

44 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-44 Sequenzvergleiche Multiple Alignments XIV : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

45 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-45 Sequenzvergleiche Multiple Alignments XV : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

46 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-46 Sequenzvergleiche Multiple Alignments XVI : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

47 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-47 Sequenzvergleiche Multiple Alignments XVII : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

48 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-48 Sequenzvergleiche Multiple Alignments XVIII : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

49 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-49 Sequenzvergleiche Multiple Alignments XIX : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

50 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-50 Sequenzvergleiche Multiple Alignments XX : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

51 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-51 Sequenzvergleiche Multiple Alignments XXI : Vorlagen: Vorlesung Uni-Jena (Softwarewerkzeuge in der Bioinformatik) und EMBO-Kurs 2002

52 Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-52 Sequenzvergleiche Beispiel Multiple Alignments:  praktischen Beispiel für multiple Alignments: Clustering von ESTs -> berechnete Consensus-Sequenzen


Herunterladen ppt "Vorlesung Einführung in die Bioinformatik - U. Scholz & M. Lange Folie #3-1 Sequenzvergleiche Sequenzvergleiche."

Ähnliche Präsentationen


Google-Anzeigen