Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

3. Gestaltung der Arbeitsumwelt

Ähnliche Präsentationen


Präsentation zum Thema: "3. Gestaltung der Arbeitsumwelt"—  Präsentation transkript:

1 3. Gestaltung der Arbeitsumwelt
Faktoren der Arbeitsumwelt wirken leistungsfördernd bzw. leistungshemmend Belastungen = Stressoren Beanspruchungen Aktivationsniveau Stressoren Arbeitsumwelt Schall Licht Klima Luftverun- reinigungen Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 53 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

2 3.1.1 Physikalische Grundlagen
3.1 Schall,Lärm Hören 3.1.1 Physikalische Grundlagen Elastische Körper lassen sich in Schwingungen versetzen Masseteilchen pendeln um ihre Ruhelage Energie breitet sich in Form von Schall- bzw. Longitudinalwellen aus Ausbreitungsgeschwindigkeit des Schalles Dichte in kg /m3 1. Feste Stoffe (dünne Stäbe) E Elastizitätsmodul in Pa 2. Flüssige Stoffe Kompressibiölität in 1/MPa Bsp.: Schallgeschwindigkeit in Wasser, = 0, /mPa Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 54 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

3 ausgewählte Schallgeschwindigkeiten in m/s
3. Gasförmige Stoffe p Druck in kPa (N/m2) Bsp.: Schallgeschwindigkeit in Luft; = 1,41 1/Mpa, = 1,239 kg/m3, p (Normal) = 101,235 kPa ausgewählte Schallgeschwindigkeiten in m/s Stahl Luft (0o C) Granit CO2 258 Blei H Glas He Mauerwerk Luft (-30oC) Holz Kork Gummi Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 55 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

4 16 Hz - 20 000 Hz 1000 Hz - 4000 Hz 3.1.2 Physiologie des Hörens
Hörbereich des Menschen 16 Hz Hz < Infraschall > Ultraschall Optimaler Hörbereich 1000 Hz Hz Normales Hörvermögen (Hörfelder Musik- und Sprachbereich) Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 56 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

5 Obere Hörgrenzenin Hz Delphin 150 000 Fledermaus 90 000 Ratte 60 000
Katze Hund Mensch Heuschrecke Uhu Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 57 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

6 Schnittbild des Ohres Außenohr Arbeitswissenschaft 58
Trommelfell (Durchmesser 10 mm, d=0,1 mm) Außenohr Hammer Amboß Steigbügel Gleichgewichtsorgan Schnecke Hörnerv f < 2000 Hz : verzerrungsfreie Übertragung mittels Gehörknöchelchen f > 2000 Hz: Übertragung Schädelknochen auf Innenohr Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 58 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

7 zweigeteilt, dazwischen Corti-Organ (30 000 Haarzellen)
Schnittbild Schnecke erbsengroß, 2,5 Windungen zweigeteilt, dazwischen Corti-Organ ( Haarzellen) Physiologie des Hörens Schwingungen werden in ovales Fenster über Gehörknöchelchen geleitet biomechanischer Wandler; Flüssigkeitswellen wandern an Membran Auslenkung Haarzellen; bioelektrischer Reiz wird über Hörnerv abgegriffen Lärmempfinden Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 59 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

8 Berufskrankheit 1998 Nr.1 in Deutschland
Ohr besitzt gegenüber Lärm keinen natürlichen Filter Ohr ist Tag und Nacht Lärm ausgesetzt Zu hoher Schalldruck überlastet Corti -Organ (Stoffwechsel) Haarzellen sterben ab = Lärmschwerhörigkeit Berufskrankheit 1998 Nr.1 in Deutschland Lärmschwerhörigkeit (BK-Nr. 2301) 1998 : angezeigte Fälle 10800 entschädigt seit 1929 anerkannte Berufskrankheit seit 1961 übergreifend auf alle Wirtschaftszweige Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 60 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

9 Umfrage Schallbelästigung (GesundheitsministeriumSachsen 1998)
Berufskrankheiten (Anteil % ,Stand 1999) 33 Lärm 28 Atemwege 15 sonstige 24 Haut Umfrage Schallbelästigung (GesundheitsministeriumSachsen 1998) Straßenverkehr 66% Flugverkehr 53 Nachbarn 31 27 Schienenverkehr 18 Industrie Sport 8 Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 61 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

10 Richtskale zur Bewertung von Geräuschen (Schalldruckpegel in dB(A)
Düsentriebwerk (Kampf-Jet) Verkehrsflugzeug Motorprüfstand GEFÜHLS- SCHMERZSCHWELLE 120 Trennschleifer 110 Kolbenkompressor 100 Bohrhammer 90 Baumaschinen,Werkzeugmaschinen,Rasenmäher GEHÖRGEFÄHRDUNG 80 Vortrag in 3 m Entfernung PKW Laserdrucker,Lüfter Computer leises Gespräch in 1m Entfernung (Kommunikation Klausur letzte Reihe) Flüstern (kommunikation Klausur 1. Reihe) Blätterrauschen Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 62 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

11 vegetativer Reaktionen
Schallstärke 9n dB(A) und signifikant nachweisbare psychophysische Reaktionen 0 - 30 Psychische Reaktionen Konzentrationsschwächen Reaktionsschwächen Ablenkungs- und Blockiereffekte Störungen Motorik ab 60 Vegetative Reaktionen Verengung Blutgefäße Verminderung Herzschlagvolumen Blutbildveränderung Pupillenerweiterung ab 85 Schwerhörigkeit + verstärkte Wirkung vegetativer Reaktionen ab 120 Schmerzgrenze Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 63 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

12 Arbeitsmedizinische Praxis
19 % der 20-Jährigen hören wie 50-Jährige (Jahrgang 1948) 10 % aller Berufsanfänger haben Hörvermögen wie Arbeiter die 10 Jahre unter Industrielärm gearbeitet haben nahezu alle Rockmusiker der 60er sind schwerhörig Moltorlärm Cesna 120 dB Disco : dB(A) Open-air: 140 dB(A) walk-man : 100 dB(A) Disco-Besuch : maximal 5 Minuten walk-man : maximal 30 min. täglich Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 64 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

13 Gehörschadensrisiko in Abhängigkeit von Dauer und Intensität (nach ISO 19999)
Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 65 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

14 Schallbelastung Belastungshöhe Belastungsdauer
3.1.3 Schallbelastung des Menschen Schallbelastung Belastungshöhe Belastungsdauer Schalldruck Frequenz Zeitlicher Verlauf Einwirkungs- dauer Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 66 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

15 Hörschwelle und Kurven gleicher Lautstärkeempfindung (Phonlinien)
dB(A) Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 67 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

16 Schallintensität des Ohres
4.1.4 Das Schallfeld und seine Bestimmungsgrößen Schallenergiedichte Quotient vorhandene Schallenergie/Raumvolumen W : Energiedichte : Dichte V: Schallgeschwindigkeit im Medium Schallstrahlungsdruck Druck, der auf alle Körper im Schallfeld wirkt, bei voll- ständiger Absorption identisch mit Schallenergiedichte Schallstärke = Schallintensität in W/m2 C : Ausbreitungsgeschwindigkeit der Teilchen mit Energie E V : Schallgeschwindigkeit im Medium Schallintensität des Ohres W/m2 Alarmsirene 50m Abstand 10-2 Sprache: 10-8 Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 68 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

17 Weber-Fechner' sches Gesetz
3.1.5 Schall- und Lautstärkepegel Menschliches Gehör nimmt nicht tatsächliche Schallintensitäten war ! Weber-Fechner' sches Gesetz Die absolute Änderung des Empfindens ist proportional der relativen Änderung des Reizes Bsp.: Wägestück von 100 g in ausgestreckte Hand; Es müssen noch 5 g dazugelegt werden,um Gewichts- Unterschied zu spüren Wägestück von 200 g in ausgestreckte Hand Es müssen noch 10 g dazugelegt werden,um GewichtsUnterschied zu spüren bei 1000 g müssen noch 50 g dagelegt werden um Gewichtsunterschied zu spüren Für Lautstärkebereiche oberhalb 30 dB gilt mit guter Näherung das Weber- Fechner‘sche gesetz Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 69 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

18 1. Schallintensitätspegel
Pegelmaße Nehmen Bezug auf gerade noch wahrnehmbare schalltechnische Größen die mit dem Sensor Ohr registriert werden können 1. Schallintensitätspegel In dB J0= W/m2 2. Schalldruckpegel Po = 0,0002 ubar Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 70 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

19 Lärmpegelmesser Dämpfungskennlinien Arbeitswissenschaft 71
objektiv anzeigende Meßgeräte Mikrofo-Verstärker- Gleichrichter- Anzeige es wird berücksichtigt,daß Pegel mit tieferen Frequenzen weniger laut empfunden werden als hohe Frequenzen (Filtereinbau) Schalldruckpegel immer frequenzbewertet (Simulation Ohr) Dämpfungskennlinien Dämpfungskennlinien von Filtern für die Bestimmung der Schall- druckpegel in dB(A), dB(B),und dB(C). Bei der Beurteilung von Geräuschimmission wird überwiegend der Schalldruckpegel in dB(A) angegeben. Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 71 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

20 Prinzip der Schalldruckpegelmessung nach DIN IEC 651
Quadrierstufe: Wechseln von Schalldruck p auf Schalleistung W Mitteilungsstufe: energetischer Mittelwert über definierte Zeitspanne S (Slow) :1 s F (Fast : 125 ms I (Impuls) : 35 ms Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 72 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

21 3.1.6 Ausgewählte schalltechnische Berechnungsgrundlagen
1. Äquivalenter Dauerschalldruckpegel Erfassung zeitlich unregelmäßig schwankender Lärmpegel innerhalb eines definierten Meßintervalles In dB(A) q Äquivalentparameter Verkehrs-Baulärm q = 4 Industrielärm q= 3 Li gemessener i-ter Schalldruckpegel ti Einwirkungszeit i-ter Schalldruckpegel T Gesamtbeobachtungszeit Bsp.: Ermitteln Sie den äquivalenten Dauerschalldruckpegel nachfolgend aufge- zeigter Schallquellen und deren Abstrahlungsdauer L1 60 dB(A) t1 75 min q=3 ; T=480 min 70 dB(A) min 80 dB(A) min 65 dB(A) min 75 dB(A) min Leq = 10/3 . 3 lg 1/480 ( , , ) Leq = 10 . lg 108/480 ( 0, ,5 . 0, ,5 . 0,4) Leq = 10 . lg 108/480 (1885,3) Leq = 75,86 dB(A) Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 73 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

22 Arbeitswissenschaft 74 2. Addition von Schallpegeln
1. Pegeldifferenz > 10 dB(A) Vernachlässigung des kleineren Pegels 2. Pegeldifferenz = 0 Resultierender Pegel 3 dB über Einzelpegel 3. Addition mehrere Schalldruckpegel gleicher Intensität Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 74 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

23 Beispiele 4.2 Lärmminderungsmaßnahen Ansatz Lärmquelle Lärmübertragung
Lärmimmission Lärmentstehung Lärmemission Lärmausbreitung Konstruktion Verfahren Wartung keine extreme Belastung Vermeidung Resonanz Dämpfung räumliche Unterteilung raumkustische Maßnahmen Lärmpausen persönlicher Schallschutz Beispiele Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 75 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

24 Arbeitswissenschaft 76 Zu Konstruktion/Verfahren
Gleitlager statt Wälzlager Schrägverzahnung statt Geradverzahnung Prinzip Drosselmotoren Hubraumvergrößerung senkt n ; 1960 : 850 cm3, 1980 : 1200 cm3, Drehzahlredu- zierung um /min; Pegelsenkung von 82 auf 74 dB(A) Werkstoffeinsatz - Reifenlärm =Abrollgeräusche steigen bei Geschwindigkeits- erhöhung bezogen auf Motorlärm mit 4. Potenz - günstige Materialpaarung Kunsttoff-Stahl gute Oberflächenbeschaffenheit (Riemenantriebe Schweißen statt Nieten Elektromotor statt Verbrennungsmotor strömungsgünstige Austrittöffnungen geringes Lagerspiel Reduzierung bewegter Massen stetige statt stoßartige Bewegungen Schrägschliff bei Stempeln an Stanzen Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 76 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

25 Arbeitswissenschaft 77 Zu Vermeidung von Resonanz
dynamisches Auswuchten von Maschinenteilen Vermeidung von schwingungsfähigen Flächen - exakte Verschraubung von Blechkonstruktionen, Antidröhnlacke, Sandwich- Bauweise, Dämpfungsbeläge, Biegesteifigkeit durch Formgebung Schwingungsisolatoren Trafo-Lager Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 77 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

26 Arbeitswissenschaft 78 Zu Lärmausbreitung
Schallschutzschirme,Schallschutzwände VDI 2720 - Deckenvariante,Stellvariante,Verkehrswesen - Lärmdämmung 4-15 dB Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 78 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

27 Arbeitswissenschaft 79 Zu Kapselung VDI 2711 - Schalldämmung bis 30 dB
- einschalige Kapseln dB - zweisxchalige Kapseln > 25 dB - Schalldämmatten Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 79 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

28 Arbeitswissenschaft 80 Kapselung Lüfter Prof. Dr. H. Lindner
Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 80 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

29 Arbeitswissenschaft 81 Schalldämpfer - bis 70 dB Prof. Dr. H. Lindner
Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 81 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

30 Arbeitswissenschaft 82 Schallpegelminderung mit Rohrschalldämpfer
Neues Verfahren Lärmbekämpfung Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 82 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

31 Zu Lärmausbreitung Arbeitswissenschaft 83
Schallabsorptionsgrad (Dämmung in %) - raumakustische Maßnahmen Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 83 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

32 Arbeitswissenschaft 84 Prof. Dr. H. Lindner Hochschule Mittweida
University of Applied Sciences 84 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

33 zu persönlicher Schallschutz
- zu räumliche Untertteilung Schalldruckpegel nimmt mit Entfernungsverdopplung um die Hälfte ab Konzentration von Hauptlärmerzeugern im Raum zu persönlicher Schallschutz Gehörschutzwatte : dB(A) Gehörschutzstöpsel : dB(A) Gehörschutzkapsel : dB(A) Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 85 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

34 Schallschutzhelme,Schallschutzwesten,Schallschutzanzüge
Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 86 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

35 Zeit in min dB(A) Arbeitswissenschaft 86 Zu Lärmpausen
Verkürzung der Expositionszeit Zeitweise andere Tätigkeit > 75 dB(A) = Organisationsproblem Zeit Zeit in min dB(A) 480 90 240 93 120 96 60 99 30 102 15 105 8 108 Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 86 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

36 Arbeitspädagogik Arbeitswissenschaft 87 Prof. Dr. H. Lindner
Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 87 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

37 1. Arbeitsplatz-Lärmschutzrichtlinie VDI 2058
3.1.7 Lärmschutzrecht 1. Arbeitsplatz-Lärmschutzrichtlinie VDI 2058 Schallpegelmessung Gehörschutzprüfung,arbeitsmedizinische Überwachung Gehörschutz, Arbeitsgestaltung 2. Unfallverhütungsvorschrift Lärm nach VGB 21 U.a. : Lärmbereiche >dB(A) kennzeichnen > 85 dB(A) Ausgabe persönlicher Körperschallschutz (> 120 dB(A) Schallschutzhelme) Arbeitnehmer müssen bei > 85 dB(A) Körperschallschutz tragen !!! Regelungen zur Gestaltung akustischer Gefahrensignale - Signale 15 dB(A) über Maximalpegel - pulsierende Signale zwischen 0,2 und 5 Hz - Frequenz: Hz - Gefahrensignal muß sich in Pegel und Frequenz von Umgebungslärm unterscheiden - Signaldauer äquivalent zur Gefahrendauer 3. Bundesimmissionsschutzgesetz- TA Lärm Regelt Verkehrslärm,Baulärm,Sportanlagen,Lärmimmission Haushaltgeräte, Industrielärm usw. - Gewerbegebiete : 69 dB(A) Tag - 59 dB(A)Nacht - reine Wohngebiete:59 dB(A)Tag - 49 dB(A) Nacht - Rasenmäher (Verbrennungsmotor ) : Schnittbreite < 50 cm 96 dB(A) >120 cm 105 dB(A) Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 88 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

38 Arbeitswissenschaft 89 Prof. Dr. H. Lindner Hochschule Mittweida
University of Applied Sciences 89 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften

39 Überwiegend geistige Tätigkeiten : 55 dB(A)
Arbeitsstättenverordnung 1974 § 15 Prinzipiell sind Lärmpegel so niedrig wie möglich anzustreben Überwiegend geistige Tätigkeiten : dB(A) einfache, überwiegend mechanisierte Tätigkeiten dB(A) Industriearbeitsplätze max. 85 dB(A) Hochschule Mittweida Arbeitswissenschaft University of Applied Sciences 90 Prof. Dr. H. Lindner Fachbereich Wirtschaftswissenschaften


Herunterladen ppt "3. Gestaltung der Arbeitsumwelt"

Ähnliche Präsentationen


Google-Anzeigen