Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie.

Ähnliche Präsentationen


Präsentation zum Thema: "Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie."—  Präsentation transkript:

1 Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie abgeleitet werden Halbleiterphysik Prof. Goßner

2 Energie-Term-Schema Man erhält das sog. Energie-Term-Schema Energie in gerade Linien in einem Energiediagramm Energie Man überträgt die kreisförmigen Elektronenbahnen eines einzelnen Atomes Radius Jeder Elektronenbahn entspricht eine einzelne Linie im Energiediagramm (ein einzelner Energieterm) Halbleiterphysik Prof. Goßner

3 Energiebänder-Schema
Die Elektronen vieler Atome (z.B. in einem Kristall) beeinflussen sich gegenseitig Energie Die zahllosen einzelnen Energieterme gehen in Energiebänder über Die einzelnen Energieterme lassen sich nicht mehr unterscheiden Energien zwischen den Energiebändern sind nicht möglich (verbotene Bänder) Halbleiterphysik Prof. Goßner

4 Energiebänder-Schema
Das Energieband der äußersten Elektronenschale wird Valenzband genannt Valenzband Energie Da freie Elektronen zur Stromleitung beitragen können, spricht man vom Leitungsband Leitungsband Oberhalb des Valenzbandes befindet sich ein Energiebereich, den Elektronen einnehmen, die sich von ihren Atomen getrennt haben (freie Elektronen) Halbleiterphysik Prof. Goßner

5 Energiebänder-Modell
Leitungsband Valenzband Verbotenes Band Reaktionen mit anderen Atomen und elektrische Vorgänge werden nur durch Elektronen im Valenzband und im Leitungsband bestimmt Üblicherweise werden daher nur diese Energiebänder und das dazwischen liegende verbotene Band dargestellt Halbleiterphysik Prof. Goßner

6 Energiebänder-Modell
Die Oberkante des Valenzbandes liegt bei der Energie WV W Leitungsband Valenzband Verbotenes Band Wvac Wvac Wvac Wvac Die Unterkante des Leitungsbandes liegt bei der Energie WC WC WC WC WC W W W W WC – WV = W ist die Ausdehnung des verbotenen Bandes (Bandabstand) WV WV WV WV Elektronen, die die Energie Wvac überschreiten, können den Kristall verlassen Halbleiterphysik Prof. Goßner

7 Energiebänder-Modell von Metallen
Bei Metallen überlappen sich Valenzband und Leitungsband W Leitungsband Valenzband Überlappung Die Unterkante WC des Leitungsbandes liegt tiefer als die Oberkante WV des Valenzbandes WC WV Valenzelektronen können damit ins Leitungsband wechseln, ohne Energie aufnehmen zu müssen Halbleiterphysik Prof. Goßner

8 Energiebänder-Modell von Halbleitern
W W Leitungsband Valenzband Verbotenes Band WV WC W Leitungsband Valenzband Verbotenes Band WV WC W Bei Halbleitern existiert ein verbotenes Band zwischen Valenzband und Leitungsband Bei Germanium beträgt der Bandabstand W  0,7 eV Bei Silizium beträgt der Bandabstand W  1,1 eV Halbleiterphysik Prof. Goßner

9 Energiebänder-Modell von reinen Halbleitern
W Leitungsband Verbotenes Band WV WC W Valenzband Bei T = 0 K halten sich alle Valenzelektronen im Valenzband auf Bei T = 0 K ist der Halbleiter ein Isolator. Das Leitungsband ist leer Halbleiterphysik Prof. Goßner

10 Energiebänder-Modell von reinen Halbleitern
Bei T > 0 K nehmen die Elektronen Energie auf. W Leitungsband Verbotenes Band WV WC W Valenzband Beträgt die Energieaufnahme bei einem Elektron  W, so wird es ins Leitungsband angehoben W Im Valenzband bleibt ein nicht besetzter Energieterm zurück, ein Loch Freie Elektronen und Löcher entstehen beim reinen Halbleiter immer paarweise:  Paarbildung Halbleiterphysik Prof. Goßner

11 Energiebänder-Modell von Nichtleitern
Es ist nicht möglich Valenzelektronen eine Energie von mehr als ca. 2,5 eV zuzuführen W Leitungsband (immer unbesetzt) Valenzband (immer voll besetzt) Verbotenes Band WV WC W Materialien mit einem Bandabstand von W  2,5 eV sind daher Nichtleiter (Isolatoren) Beispiel: Diamant W  7 eV Halbleiterphysik Prof. Goßner

12 Energieverteilung der Ladungsträger
Über die Energieverteilung der Ladungsträger können nur Wahrscheinlichkeits-Aussagen getroffen werden Die Ladungsträgerdichte n(W) auf einem bestimmten Energieniveau hängt ab von der dort herrschenden Dichte D(W) der besetzbaren Energieterme (= Zustandsdichte) und von der Wahrscheinlichkeit P(W), daß die einzelnen Energieterme mit Ladungsträgern besetzt sind Es gilt: n(W) = D(W) · P(W) Halbleiterphysik Prof. Goßner

13 Dichte besetzbarer Energieterme = Zustandsdichte
W WV WC Dn(W) Dp(W) In der Nähe der Bandkanten gilt für die Zustandsdichte näherungsweise: Bei Null beginnend wächst die Zustandsdichte zum Bandinneren hin Halbleiterphysik Prof. Goßner

14 Besetzungswahrscheinlichkeit
Die Besetzungswahrscheinlichkeit der Energieterme folgt der Fermi-Dirac-Verteilung k = 1,38 ·10-23 Ws/K (Boltzmann-Konstante) T = absolute Temperatur WF = Fermi-Niveau (Fermi-Energie) Halbleiterphysik Prof. Goßner

15 Besetzungswahrscheinlichkeit bei T = 0 K
Für W > WF P(W>WF) = 0 Halbleiterphysik Prof. Goßner

16 Besetzungswahrscheinlichkeit bei T = 0 K
Für W < WF P(W<WF) = 1 Halbleiterphysik Prof. Goßner

17 Besetzungswahrscheinlichkeit bei T = 0 K
1 0,5 WF W P(W) Bei T = 0 K ergibt die Fermi-Dirac-Verteilung eine Sprungfunktion Bei T = 0 K sind alle Energieniveaus oberhalb von WF unbesetzt [P(W) = 0] Bei T = 0 K sind alle Energieniveaus unterhalb von WF besetzt [P(W) = 1] Halbleiterphysik Prof. Goßner

18 Besetzungswahrscheinlichkeit bei T > 0 K
1 0,5 WF W P(W) Bei T > 0 K ergibt die Fermi-Dirac-Verteilung einen stetigen Übergang von P(W) = 0 zu P(W) = 1 300 K 500 K Bei W = WF beträgt die Besetzungswahrscheinlichkeit: WF 0,5 WF 0,5 WF 0,5 WF 0,5 P(WF) = 0,5 Halbleiterphysik Prof. Goßner

19 Lage des Fermi-Niveaus bei reiner Eigenleitung
W Leitungsband WV WC Valenzband Beim reinen (nicht dotierten) Halbleiter liegt das Fermi-Niveau in der Mitte des verbotenen Bandes WF WF WF WF Halbleiterphysik Prof. Goßner

20 Ladungsträgerverteilung bei Eigenleitung
T = 0K Alle besetzbaren Energieterme unterhalb des Fermi-Niveaus (also im Valenzband) sind vollständig mit Elektronen besetzt. Es gibt keine Löcher Alle besetzbaren Energieterme oberhalb des Fermi-Niveaus (also im Leitungsband) sind unbesetzt Es gibt keine freien Elektronen. Halbleiterphysik Prof. Goßner

21 Ladungsträgerverteilung bei Eigenleitung
T > 0K Durch Energiezufuhr werden Elektronen aus dem Valenzband ins Leitungsband angehoben (Paarbildung) Freie Elektronen im Leitungsband Gleich viele Löcher im Valenzband Einzelne Elektronen fallen unter Energieabgabe vom Leitungsband ins Valenzband zurück (Rekombination) Freie Elektronen und Löcher löschen sich gegenseitig aus Temperaturabhängiges Gleichgewicht zwischen Paarbildung und Rekombination (Intrinsic-Konzentration) Halbleiterphysik Prof. Goßner

22 Ladungsträgerverteilung bei Eigenleitung
Für die Energieverteilung der freien Elektronen im Leitungsband gilt: Für die Energieverteilung der Löcher im Valenzband gilt: (n(W) bzw. p(W) = Ladungsträgerdichte pro Intervall dW) Halbleiterphysik Prof. Goßner

23 Ladungsträgerverteilung bei Eigenleitung
Das Integral von p(W) über das gesamte Valenzband ergibt ebenfalls die Intrinsicdichte ni Das Integral von n(W) über das gesamte Leitungsband ergibt die Intrinsicdichte ni Energieverteilung freier Elektronen Energieverteilung der Löcher Dp(W) Dn(W)  {1-P(W)}  P(W) = n(W) = p(W) W WV WC WF Dn(W) Dp(W) 1 0,5 P(W) n(W) p(W) Fläche = ni Fläche = ni Halbleiterphysik Prof. Goßner

24 Energiebändermodell bei Störstellenleitung
Durch Dotieren des Halbleiters treten besetzbare Energieterme im verbotenen Band auf sog. Störterme Die Störterme beeinflussen die Lage des Fermi-Niveaus Halbleiterphysik Prof. Goßner

25 Energiebändermodell bei n-leitendem Halbleiter
n-leitende Element-Halbleiter sind mit 5-wertigen Fremdatomen dotiert W Leitungsband WV WC Valenzband Das jeweils fünfte Valenzelektron besitzt eine Energie im verbotenen Band nahe der Leitbandkante (Störterme) WF Störterme Dadurch verschiebt sich das Fermi-Niveau in Richtung Leitbandkante Halbleiterphysik Prof. Goßner

26 Ladungsträgerverteilung bei n-Leitung
Das Integral von n(W) über das gesamte Leitungsband ergibt die Majoritätsträgerdichte Energieverteilung freier Elektronen Energieverteilung der Löcher Das Integral von p(W) über das gesamte Valenzband ergibt die Minoritätsträgerdichte Das Ferminiveau verschiebt sich in Richtung Leitungsband Unterhalb der Leitbandkante treten Störterme auf Dp(W) Dn(W)  {1-P(W)}  P(W) = n(W) = p(W) W WV WC Dn(W) Dp(W) W 1 0,5 P(W) W n(W) p(W) Majoritätsträger WF Minoritätsträger Halbleiterphysik Prof. Goßner

27 Ladungsträgerverteilung bei p-Leitung
Das Integral von n(W) über das gesamte Leitungsband ergibt die Minoritätsträgerdichte Das Integral von p(W) über das gesamte Valenzband ergibt die Majoritätsträgerdichte Energieverteilung freier Elektronen Energieverteilung der Löcher Das Ferminiveau verschiebt sich in Richtung Valenzband Oberhalb der Valenzbandkante treten Störterme auf Dp(W) Dn(W)  {1-P(W)}  P(W) = n(W) = p(W) W WV WC Dn(W) Dp(W) W 1 0,5 P(W) W n(W) p(W) Minoritätsträger WF Majoritätsträger Halbleiterphysik Prof. Goßner

28 Ladungsträgerverteilung innerhalb der Bänder
W n(W) p(W) n-Leitung W n(W) p(W) p-Leitung W Eigenleitung Die beweglichen Ladungsträger halten sich vorzugsweise in Bandkantennähe auf n(W) WC Freie Elektronen im Leitungsband nahe WC WV p(W) Löcher im Valenzband nahe WV Halbleiterphysik Prof. Goßner


Herunterladen ppt "Energiebetrachtung Die Bahnradien der Elektronen sind ein Maß für deren Energie Aus den Elektronenbahnen kann damit eine grafische Darstellung der Elektronenenergie."

Ähnliche Präsentationen


Google-Anzeigen