3/28/2017 Ernährung in der Chirurgie R.Stocker Abteilung Chirurgische Intensivmedizin Universitätsspital Zürich.

Slides:



Advertisements
Ähnliche Präsentationen
Gesunde Ernährung ? eqiooki.de.
Advertisements

Adipositas - Therapiemöglichkeiten
„Schach dem Herzinfarkt“
Patientenpfade und Patientensicherheit
Ernährung bei Lebererkrankungen
Leber(enzym)diagnostik
Heilen Helfen adjuvante Chemotherapie
Katecholamintherapie
"Neurobiologische Effekte körperlicher Aktivität"
Aminosäuren Von: Imke Spö. und Jana.
Biologisch wichtige organische Verbindungen
Ausdauersport Energieumsatz.
Gesunde und ungesunde Ernährung
Das zentrale Thema der Trainingslehre im Pflichtfach Sport!
Modul Synkope / Herzstolpern: Störungen des Elektrolyt-Haushalts
Funktionen von Molekülen
Die wichtigsten Punkte und Erklärungen
Thema dieses Workshops: Hashimoto Thyreoiditis
Stoffwechsel.
Wie fit zu bleiben.
Milchfieber und BCS der Milchkuh
Ernährung Grundlagen.
Enterale und parenterale Ernährung Fortbildung: Intensivstation II, Klinikum Bamberg.
Diabetes mellitus orale Therapie
Repetitorium 1. Definition ‚Nephrotisches Syndrom‘ ? 2. Ursachen ?
Optimum Omega Provided by nature. Proven by science. Diese Präsentation darf nur als Schulungsmaterial verwendet werden. Die enthaltenen Aufstellungen.
Einstieg Lerneinheit 1/2
Welche Einzelfaktoren sind wichtig?
Markov Cohort Simulation Study Reveals Evidence for Sex-based Risk Difference in Intensive Care Unit Patients R. Baeuerle, A. Ruecker, Th. Schmandra,
Präsentiert.
Erkrankungen des Blutes (ANEMIE)
Journalistenseminar „Welt-Diabetes-Tag 2013“
Gesunde Ernährung Pyramide
Enthält mittels Nanotechnologie aufbereitetes CoQ10
Nierentransplantation
Rückentriathlon.
Herzinsuffizienz die auch Herzleistungsschwäche genannt wird
Verbrauchen wir beim Nichtstun Kalorien?
Dr. Gerd C. Hövelmann (LWL-Klinik Gütersloh), Oliver Dollase (EvKB)
Ernährung im Alter.
Wer früher stirbt, ist länger tot
OVERdrive. OVERdrive fördert eine optimale Ausdauer bei intensiver körperlicher Aktivität und unterstützt eine erhöhte Energieproduktion sowie eine.
Risikofaktoren für Mangelernährung feststellen
VS.. Eigenschaften von Lebensmitteln und die darin enthaltenden Kohlenhydrate.
Informationen zur HRV-Analyse Herzrythmusvariabilität
Diabetesdiät Gibt es das überhaupt noch?
Cortisol Flexible Dosierung, adäquate Menge
Darm und Diabetes 9. Juni 2011 PD Dr. med. Kaspar Berneis
Sport für den Krebspatienten
Glucocorticoide im septischen Schock
Universitätsspital Basel
DPP-4 Blocker = Gliptine
Die perioperative Therapie beginnt beim Hausarzt
Der Mensch ist , was er ißt
Operative Eingriffe im Gehirn bei schweren Zwangsstörungen:
Ausdauer.
Durch dick und dünn - Neue Entdeckungen zum Fettstoffwechsel
Nosokomiale Infektionen (NI)
Sepsis erkennen, initiale Diagnostik und Therapie
Ernährung bei akuter Pankreatitis
Diabetestherapie vor, während und nach einer Operation
Eingesehen Kunde/Kundin verlangt… E Z A V KN i ~ H Eigenschaften Zus’setzung Anwendung Verkaufsargum. Kontraindikationen Nebenwirkungen Interaktionen (Beispiele)
Eingesehen Kunde/Kundin verlangt… E Z A V KN i ~ H Eigenschaften Zus’setzung Anwendung Verkaufsargum. Kontraindikationen Nebenwirkungen Interaktionen (Beispiele)
Warum werden die Schweizer immer übergewichtiger. Prof. Dr. med
Marfan- mögliche Nahrungsergänzung. Worauf sollte man bei der Auswahl der Nahrungsergänzungsmittel achten: In der Apotheke werden nur streng zertifizierte.
Ernährung bei chronisch-entzündlichen Darmerkrankungen (CED) Dr. med. Carl Oneta Facharzt für Innere Medizin, Gastroenterologie, spez. Hepatologie Schaffhauserstrasse.
Interaktion zwischen Metronidazol und parodontopathogenen Bakterien im Zusammenhang mit KB-Zellen Daniela Stephan.
Ernährung und Lebererkrankungen
Deutsche Gesellschaft zur Bekämpfung der Krankheiten von Magen, Darm und Leber sowie von Störungen des Stoffwechsels und der Ernährung e.V.
 Präsentation transkript:

3/28/2017 Ernährung in der Chirurgie R.Stocker Abteilung Chirurgische Intensivmedizin Universitätsspital Zürich

Geschichte Zusammenhang zwischen “Essen” und “Wohlfühlen” seit Jahrtausenden bekannt Schon primitive Kulturen suchten nach und verabreichten Nahrungsmittel an Schwache und Kranke, denen sie magische und heilende Eigenschaften zusprachen

Geschichte Erkenntnisse über zentrale Rolle des Darmes bei der Entstehung post-chirur-gischer Komplikationen führte nach einer Phase konsequenten Fastens über den Umweg der parenteralen Ernährung zum Konzept der frühenteralen Ernährung, welches heute eine der wenigen “evidence based” Therapien in der Intensivmedizin darstellt

Stoffwechsel I Ernährungstechnisch 3 Kompartimente Fettfreies Gewebe: Skelettmuskulatur: labiler Protein-Pool für Körper und Leber, Glykogenspeicher Körperfett: Hauptenergiespeicher, wenig metabolische Aktivität, wenig strukturelle Funktionen extrazelluläres Wasser: Hauptzuordnungsort der Glukose; quantitativ wenig, qualitativ sehr wichtig. Pool stellt Substrat für Muskulatur zur Verfügung stellt Abtransport "metabolischer Abfälle" sicher.

Stoffwechsel II Antwort auf Fasten und Verletzung / Infektion Netto-Katabolie von Körpersubstanz zur Energie- und Substratgewinnung unter Präservation der vitalen Organe (Hirn, Herz, Leber, Niere..) auf Kosten von Muskulatur und Bindegewebe

Stoffwechsel III Fasten Angepasst an cyklische bzw. saisonale Nahrungszufuhr: In Überschusszeit: Hauptenergielieferant=Kohlehydrate. Überschusszufuhr wird in der dichtesten Form als Fett gespeichert

Stoffwechsel IV Fasten Bei Mangelzufuhr: Energiegewinnung aus Fett-speicher, Reduktion des Energieverbrauches. 1. Glykogenolyse (72 h) 2. Glukoneogenese: Glukosegewinnung aus glukoplastischen AS (u.a. Glutamin) und Glyzerol für obligate Glukoseverbraucher (Ec,RES, Makrophagen, Hirn) 3. Lipolyse: Energie aus Fettspeicher

Stoffwechsel V Kritisch Kranke, Verletzung, Infektion Akutphasenantwort (TNF, IL-1....) mit Ziel, Leber- und Immunsystem-volumen zu vergrössern um Infek-tabwehr zu verbessern und Wundreparation zu initiieren => Energieintensiv (v.a. Glukoneogenese und Proteinsynthese) erhöhter Energieverbrauch Katabolie von Speichern

Stoffwechsel VI Kritisch Kranke, Verletzung, Infektion Katabolie durch gegenregulatorische Hormone (antiinsulinär, Stresshormone) Katabolie nur reduzierbar aber nicht umkehrbar solange Trigger weiterbesteht Insulinresistenz peripherer Gewebe Nur bei gutem Ernährungszustand und unkompliziertem Verlauf gilt "5-Tage-Regel" für Ernährungsbeginn

Stoffwechsel VII

Stoffwechsel VIII

Stoffwechsel IX Stoffwechselveränderungen nach Verletzung, Trauma und Sepsis Aggressionsstoffwechsel (ebb phase) unmittelbar nach Trauma für Stunden bis 1-2 Tage Metabolische Paralyse Energieverbrauch tief initiale  der Insulinsekretion starke  der katabolen (gegenregulatorischen) Hormone Energiebereitstellung, Glukose- und Fettoxidation Entleerung der Energiespeicher verminderte Eiweissynthese

Stoffwechsel X Stoffwechselveränderungen nach Verletzung, Trauma und Sepsis Postagressionsstoffwechsel (flow phase) ab h bis 1-2 d, bei unkompl. Verlauf ca. 10 Tage Stressstoffwechsel: toxin-/zytokinbed. Überwiegen antiinsulinärer Faktoren Katabolie, Hypermetabolismus Insulinresistenz (Glukoseverwertungsstörung trotz hoher Insulin-sekretion) EN-Gewinn aus Lipolyse, Glukoneogen.aus(körpereig.) Proteinen Katecholamin-/Glukagon-/Insulin-/Kortisolanstieg Umstellung auf Fastenstoffwechsel nicht möglich

Stoffwechsel XI Stoffwechselveränderungen nach Verletzung, Trauma und Sepsis Septikämiestoffwechsel Wie Postaggressionsstoffwechsel mit zusätzlicher partieller Lipid- und Ketonkörperverwertungsstörung bei maximalem Energiebedarf Maximale Proteolyse für Glukoneogenese unter Energieaufwand (septischer Autokannibalismus) mit beschleunigter Muskelproteolyse und AS-Freisetzung trotz Verwertungsstörung

Stoffwechsel XII Stoffwechselveränderungen nach Verletzung, Trauma und Sepsis Rekonvaleszenzstoffwechsel anabol, insulinbetont bessere Glukoseverwertung, Eiweissresynthese Wiederauffüllen der Reserven

Stoffwechsel XIII Patienten brauchen in der Postaggressionsphase mehr Kalorien (1500-2500 kcal/die); CAVE Überernährung mehr Proteine: 80-150 kcal/g Stickstoff initial weniger Kohlehydrate initial mehr Lipide mehr Vitamine und Spurenelemente

Physiologie Oberer GI-Trakt (Magen, Dünndarm) normalerweise steril Kolon, Rektum: Oekologisches Gleichgewicht verschiedenster (apathogener und potentiell pathogener) Mikroorganismen Intakte Darmwand (Mukus,Epithel,Zell-desquamation, IG-A-Opsonierung) verhindert normalerweise Translokation Bei vereinzelter Translokation: Vorsorgliche systemische IG-Produktion

Pathophysiologie

Physiologie Bakterielle Flora  von neutralen Mucinen und Sulfomucinen,  von Sialomucinen im Dünndarm  von neutralen Mucinen und Sulfomucinen,  Sialomucinen in Zoekum und Kolon Ausdruck der bakteriellen mukolytischen Aktivität und der Effekte von bakteriellen Metaboliten auf die Mukosa Meslin et. al. Comp Biochem Physiol A Mol Integr Physiol 1999 123:235

Physiologie Bakterielle Flora Degradation von Substraten Lösliche Nahrungsfasern werden zu SCFA abgebaut; stellen Hauptnährsubstrat der Kolonozyten dar

Physiologie Die Gegenwart einer normalen intestinalen Flora verbessert die Heilung von intestinalen Anastomosen Okada et. al. 1999 Br J Surg 86:961

Physiologie 50% der Nährstoffe des Dünndarmepi-thels und > 80% der Nährstoffe des Dickdarmepithels kommen aus dem Darmlumen

Pathophysiologie Kritisch Kranke: empfindlich gegenüber Schädigung der intestinalen Mukosa, Veränderungen der mukosalen Permeabilität, und Versagen der intestinalen Abwehrmechanismen

Pathophysiologie Translokation von Bakterien und Endotoxin => SIRS, Sepsis => MOF (Yao et al. Resuscitation 1995)

Pathophysiologie Bakterielle Translokation: Für Sepsis verantwortliche Organismen  Organismen, die in mesenterialen Lymphknoten gefunden werden können. Unterstützt “gut origin hypothesis” der Sepsis beim Menschen. (OBoyle et al. GUT 1998)

Protektion gegen bakterielle Invasion Selective Digestive Decontamination (SDD)??? Selektion von mehrfach-resistenten G+ Kokken. Kein Effekt auf Mortalität. Deutliche finanzielle Belastung Quino et. al. 1996. Chest 109:765

Pathophysiologie Antibiotika selektionieren pathogene Darmkeime und können zu Resistenzbildung führen (z.B. Cl difficile, extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae, Enterokokkus faecalis) Decre et. al. 1998 Clin Inf Dis 27:834

Protektion gegen bakterielle Invasion Erhalt der Darmflora Erhalt der Darmmukosa endoluminale Substratzufuhr Optimierung der intestinalen Hämodynamik Substratangebot für schnell replizierende Zellen (z.B. Glutamin) Aufrechterhaltung der Peristaltik

Ziele der Ernährung Sicherstellung einer adäquaten Substratzufuhr zur Aufrechterhal-tung der morphologischen und funktionellen Organintegrität sowie zur Adaptation an Akutphasen-reaktion nach Trauma/ Operation.... Erhalt der funktionellen und morphologischen Integrität des Gastro-Intestinaltraktes

Folgen der Malnutrition Beschleunigte Katabolie (u.A. Skelett-/Atemmuskulatur) Störung der Wundheilung Störung der Immunabwehr Störung der Organfunktionen u.A. auch des Darmes => Risiko für MOV Verzögerte Rehabilitation

Ernährungsplanung Ernährungszustand? normal Malnutrition Aktueller Kalorien-/Substrat-bedarf Monitoring Ernährungsroute

Ernährungszustand Body Mass Index (BMI): Gewicht (kg)/Grösse (m2) BMI Punkte  20 0 18-19 1 15-17 2 <15 3 Nicht beabsichtigter Gewichtsverlust in den letzten 3 Monaten Gewichtsverlust Punkte keiner 0 0-3 kg 1 3-6 kg 2 >6 kg 3

Ernährungszustand Appetit Punkte Fähigkeit zu essen Punkte gut; 3 Malzeiten/Tag 0 schlecht (weniger alsdie Hälfte/ kleine Portionen 2 kein (isst nichts oder kaum) 3 Fähigkeit zu essen Punkte problemlos, selbständig keine Diarrhoe/Erbrechen 0 Kauschwierigkeiten, Nausea Erbrechen, Durchfall (bis 2 x/die) 1 Kauprobleme, Schluckprobleme braucht pür./fl. Kost, Hilfe b. Essen, Erbrechen/Diarrhoe 3-5x/die 2 orale Ernährung unmöglich schweres Erbrechen u/o massive Diarrhoe > 5x/die 3

Ernährungszustand Metabol. Stressfaktor Punkte Beurteilung kein  konsum. Grunderkr. Infekt 0 gering leichter Infekt,minor Surgery 1 mässig grösserer Infekt,Dekubitus,Frakturen, Verbrennung < 20%,major Surgery, aktive chron.entzündl.K’heiten 2 gross Polytrauma,mult.Fx. Verbrennung >20%, mult. Dekubiti, Sepsis,fortgeschr. Malignome, Leberinsuffizienz, AIDS 3 Beurteilung Punkte Risiko Massnahmen 0-3 gering Überwachung 4-6 erhöht Monitoring,Ergänzungsnahrung 7-15 hoch prä-/postoperative Ernährungstherapie

Ernährungszustand Zusatzparameter Oberarmumfang Hautfaltendicke Wadenumfang

Kalorienbedarf Grundumsatz || Harris Benedict + Aktivitätsfaktor 21 kcal/kg KG/die || 66.5+(13.7xkg)+(5xL)-(4.7xAlter) 24 kcal/kg KG/die || 655+(9.6xkg)+(1.8xL)-(6.8xAlter) + Aktivitätsfaktor liegender Spital-Patient + 20% GU mobilis. Spital-Patinent + 30-40% GU Ambulant + 50% (Büro)- +70%(Maurer) + Krankheitsfaktor Fieber +10-20% GU/°Fieber, Sepsis +10-40% GU Verbrennung +40-50% GU, Polytrauma +40-100% GU .........

Monitoring I Indirekte Kalorimetrie (z.B. Deltatrac) = Referenzmethode (Jolliet et al. Enteral nutrition in intensive care patients: a practical approach. Intensive Care med 1998)

Monitoring II Albumin (HWZ 2-3 h bis 20 Tage; viele Einflüsse) Transferrin (HWZ 8-10 Tage; prognostischer Wert, reagiert besser auf nutritive Repletion als Albumin) Präalbumin (HWZ 2 Tage; Prädiktiv für Stickstoffstatus und nutritive Repletion) Retinol-bindendes Protein (HWZ 12 h; transportiert durch Präalbumin; reagiert sehr schnell auf nutritive Repletion) Cholinesterase (HWZ 5-12 Tage; Mass für funktionelle Leberzellmasse; Synthese an Albuminsynthese gekoppelt)

Monitoring III Fettstoffwechsel Stickstoffbilanz: Lymphozytenzahl Cholesterin Triglyceride Stickstoffbilanz: Lymphozytenzahl

Monitoring IV Körpergewicht (unbrauchbar bei Capillary Leak) Antropometrie (unbrauchbar bei Capillary Leak) indirekte Kalorimetrie Bioimpedanzanalyse (unbrauchbar bei Capillary Leak)

Ernährungsroute Total/Partielle Parenterale Ernährung Zentral Peripher Enterale Ernährung Gastral Postpylorisch duodenal Jejunal

Parenterale Ernährung TPN Indikationen Unmöglichkeit der oralen/enteralen Ernährung innerhalb der ersten 5-7 Tage bei normalem Ernährungszustand Ergänzung unzureichender enteraler Kalorienzufuhr Prä-/postoperativ bei schwerer Malnutrition und Unmöglichkeit einer oralen/enteralen Ernährung Speicherschutz perioperativ (peripher-venös)

Parenterale Ernährung TPN Substrate Glukose Fette Aminosäuren, Proteine Vitamine, Spurenelemente (Zn, Cu, Se)

Parenterale Ernährung TPN Glukose: Minimale Glucosezufuhr  insulinunabh., endogenen Glucoseverbrauch von Gehirn, Ec, Makroph, RES (ca. 150-200 g/die);  Glucoseutili-sation,  der Glucosezufuhr. CAVE: CO2-Produktion  Insulin in nicht-Diabetikern ???(Lebersteatose, intrahepatische Cholestase) Fette: Stresstoffwechsel, Sepsis: initiale Hauptenergiequelle: Fett (CAVE: gestörte Fettclearance) Aminosäuren: Nicht-Proteinkalorien:Stickstoff = 80-150:1 (entspricht 70-150 g/die bzw. 0.8-1,5 g/kg KG)

Spezielle Substrate I Arginin  Stickstoffbilanz  Wundheilung (Kollagensynthese und -deponierung)  thymusabhängige und T-Zell-abhängige Immunfunktion Glutamin CAVE: Glutamat bei Schädel-Hirn-Trauma Energiesubstrat für schnell replizierende Zellen wie Immunzellen und Enterozyten  Makrophagenfunktion Schützt Glutathionspeicher in Leber,  oxidativen Stress, posttraumatischen/septischen Leberschaden Trophische Effekte auf Darmmukosa=> Translokation

Spezielle Substrate II Omega-3-Fettsäuren  Bildung und Metabolismus von proinflammatorischen Prostanoiden (Arachidonsäure, Leukotriene, Thromboxane) und Zytokinen v.a. im Zusammenhang mit Endotoxin, Sepsis, Reperfusion Medium-Chain-Triglyceride (MCT) nicht als Überschussfett gespeichert =>instantane Oxidation Trsp ohne Chylomikronen=>schnellere Verfügbarkeit und Clearance Carnitin-Carrier-unabhängiger Transport in Mitochondrien => bessere Clearance, schnellere Verfügbarkeit für Oxidation kleinere Aufnahme in RES=>kleinere Beeinträchtigung der RES-Funktion CAVE: intrazelluläre Fettüberladung

Spezielle Substrate III Fasern Gemisch aus unlöslichen und/oder löslichen, unverdaulichen pflanzlichen Zellwandpolysacchariden Lösliche Fasern: Degradation zu SCFA => Primäres Substrat für Kolonmukosa:  Translokation, MOV Unlösliche Fasern (Regulation intestinaler Transit, Reduktion von Diarrhoe) günstige Einflüsse auf gastrointestinale Anastomosen Verbesserter Erhalt der Kolonintegrität. Verbesserte Wundheilung Verbesserte Stoffwechseladaptation nach Chirurgie, Trauma Verzögerte Kohlehydratresorbtion Reduzierte Absorbtion bis zu Nettoverlust von Eisen, Kupfer

Spezielle Substrate IV Verzweigtkettige Aminosäuren Einflüsse auf Proteindegradation und Synthese im Skelettmuskel Hauptmetabolisierung in Peripherie (und nicht in Leber) passieren Bluthirnschranke; Competitieren mit aromatischen AS (Vorläufer von Monoamin-Neurotransmittern) =>Vorteile bei Leberinsuffizienz (Enzephalopathie) =>potentielle Vorteile beim septischen Autokannibalismus

Enterale Ernährung Indikation Grundsätzlich alle Intensivpatienten die nicht ausreichend peroral ernährt werden können Auch bei fehlenden Darmgeräuschen retroperitonealen Hämatomen Post-Laparotomie ................

Positive Effekte der enteralen Ernährung Verbesserte Darm Hämodynamik sichert Splanchnikusintegrität (Purcell et al. Am J Surg 1993 ). Splanchnische hämodynamische Parameter: während Endotoxin- Schock,EN  alle Parameter (Kazamis et al. World J Surg 1998)

Positive Effekte der enteralen Ernährung EN  septische Morbidität verglichen mit Fasten und TPN . Schlüsselmechanismus: Erhalt mukosalen Barrierenfunktion (VA study JPEN 1992) Früher Beginn mit EN: signifikant günstiger Effekt auf septische Komplikationen (Minard G et al. New Horiz 1994)

Wie früh ist früh? Beginn der EN innerhalb der ersten 6 Stunden nach Trauma: intestinale Permeabilität  MOF Score  verglichen mit einem Beginn später als 6 Stunden (Kompan et. al Intensive Care Med 1999)

Problem: Gastrische Kolonisierung Kontinuierliche gastrale Ernährung erhöht gastralen pH. Cutoff point für bei pH  4 für Kolonisation mit G-Bakterien. (Dive et al. Gastic acidity and duodenogastric reflux during nasojejunal tube feeding in mechanical ventilated patients 1999 Intensive Care Med)

Problem: Gastrische Kolonisierung Massnahmen: Nächtliche Pause Jejunale Ernährung (nur kleiner Reflux mit mittl. pH-Werten von 2,7 => Bakterizidie bleibt erhalten) (Dive et al. Gastic acidity and duodenogastric reflux during nasojejunal tube feeding in mechanical ventilated patients 1999 Intensive Care Med)

“How to do” Start innerhalb 2 Stunden nach Eintritt mit 20 ml Sondennahrung/h via Magensonde (Triggerung, Blut-fluss-Redirektion, Ulkusprophylaxe; nicht Kalorienzufuhr) Wenn perorale Nahrungsaufnahme möglich: Trinken/Essen sobald gut wach und Bedürfnis vorhanden

“How to do” Steigerung innerhalb 48-72 h bis kalorische Bedürfnisse gedeckt Prokinetika falls erforderlich Nächtliche Pause wenn möglich

“How to do” Kalorien-/Proteinbedarf 20*-25, 25*-30 non-protein kcal/Tag 1.0*-1.2-(1.5) g/kg KG Proteine/Tag (*Alter) Erhöht bei Fieber,Infekt, Sepsis

“How to do” Zusätzliche/Spezifische Substrate Unlösliche Fasern (Regulation intestinaler Transit, Reduktion von Diarrhoe) Lösliche Fasern: Degradation zu SCFA => Primäres Substrat für Kolonmukosa Vitamine, Spurenelemente Glutamin (Energiesubstrat für schnell replizierende Zellen wie Immunzellen und Enterozyten) -3 Fettsäuren, Arginin, Nucleotide: Immunonutrition

Kontraindikationen Grundsätzlich keine Patienten mit ausreichender peroraler Nahrungsaufnahme etablierter Ileus Relativ Subileus proximale Darmanastomosen “Abdomineller Hochdruck”

Problem: Gastraler Transport, Gastroparese Häufig Ursachen:z.B. ICP ,Zytokine, Corti-cotropin-Releasing Factor, Opiate, Dopamin (Tarling MM et. al. A model of gastric emptying using paracetamol absorption in intensive care patients Intensive-Care-Med. 1997 De Deyne C et. al. Early enteral feeding in cranial trauma. Ann-Fr-Anesth Reanim. 1998) Magenaspirat > 150 ml ODER > 2 x stündliche Zufuhrrate

Problem: Gastraler Transport, Gastroparese 1. Opioide,  Sedation, 2.Metoclopramide 10 mg 3 x/Tag 3.Cisapride 10 mg - 20 mg /Tag 4.(Erythromycin) 5.Naso-Jejunal-Sonde(Spitze distal Treitz) mit gastr.Dekompression 6.ggf. Reduktion der Zufuhrrate

Problem: Diarrhoe Ursachen: 1. Verzögerter Beginn/vorgängiger Unter- bruch der enteralen Zufuhr 2. Malnutrition/Hypalbuminämie 3. Fieber/Hypothermie 4. Vorliegen eines Infektfokus 5. Antibiotika (Bleichner et.al. 1997. Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients. Intensive Care Med)

Problem: Diarrhoe Massnahmen: 1. oder stop von Antibiotika 3. Auschluss einer AB-induzierten Kolitis (Cl.difficile) 2. Saccharomyces boulardii* 4. Zusammensetzung, Intoleranz, Fasern, Osmolarität (*Bleichner et.al. 1997. Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients. Intensive Care Med)

Schlussfolgerung Die frühe enterale Ernährung dient nebst der Kalorienzufuhr der spezifisch Behandlung des Darmes und des Splanchnikusgebietes und ist deshalb ein essentieller Teil der Intensivtherapie

Schlussfolgerung Gastrische Stase, Fehlen von Darmgeräuschen, und kürzlich durchgeführte Abdominalchirurgie sind keine Hindernisse für die frühe enterale Ernährung. Mit motivierten Mitarbeitern, der Verwendung von Prokinetika und jejunalen Ernährungssonden kann eine früh-enterale Ernährung bei praktisch allen Patienten erfolgreich durchgeführt werden

Schlussfolgerung Trotz hohem Morbiditätspotential ist die natürliche intestinale Flora entscheidend für eine intakte Darmphysiologie Ziel ist nicht die Keimelimination sondern die Integritätserhaltung der mukosalen Barriere gegenüber der Translokation von Toxinen und Mikroorganismen sowie der Erhalt eines physiologischen Darmmilieus

Schlussfolgerung Die Enterale Ernährung dient nebst der Kalorienzufuhr der spezifisch Behandlung des Darmes und des Splanchnikusgebietes und ist deshalb ein essentieller Teil der Intensivtherapie