A DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich 1 ATHENA - Cold antihydrogen production Production of cold antihydrogen atoms in large quantities.

Slides:



Advertisements
Ähnliche Präsentationen
Kern- und Teilchenphysik
Advertisements

Letzte Stunde: Photoelektrischer Effekt Verlauf des Wirkungsquerschnittes als Funktion der Photonenergie 6 * cm 2 Fläche Wasserstoffatom 8 * 10.
Folie 1 © L-LAB 15. April 2014 Progress report about the mesopic vision as an example car lighting Stephan Völker Sabine Raphael Dirk Kliebisch.
NARVAL Meeting 12./13. January 2012
+ Arbeitsbericht mit Blick in die Zukunft M. Pernicka
Semileptonische Zerfälle bei BELLE FAKT04 Weyer Laurenz Widhalm Ereignisrekonstruktion in C++ bei BELLEPDA Seminar 11/02 Laurenz Widhalm.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
Max-Planck-Institut für Physik (Werner Heisenberg Institut)
Wind fields can e.g. be calculated using the so-called momentum equations which are based on the Navier Stokes equations. But this is complicated mathematics.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
Institut für Angewandte Mikroelektronik und Datentechnik Course and contest Results of Phase 4 Nils Büscher Selected Topics in VLSI Design (Module 24513)
SiPass standalone.
Beam Dynamics Meeting March Professur für Theoretische Elektrotechnik und Numerische Feldberechnung Sebastian Lange Simulation of Longitudinal.
Institut für Angewandte Mikroelektronik und Datentechnik Course and Contest Results of Phase 5 Eike Schweißguth Selected Topics in VLSI Design (Module.
Literary Machines, zusammengestellt für ::COLLABOR:: von H. Mittendorfer Literary MACHINES 1980 bis 1987, by Theodor Holm NELSON ISBN
Akkusativ Präpositionen
Teammeeting NTW, Uta Bilow International Masterclasses 2013.
The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.
III II I Relations between masses and mixing angles.
Pierre Auger Observatory. Pierre Auger( ) Was a nuclear physics and cosmic ray physics. Made cosmic ray experiments on the Jungfraujoch Discovery.
Task 1.2: Fully Coupled Hydrogeophysical Inversion of Salt-Tracer Experiments RECORD PhD Retreat 9 th -10 th June 2009 Davina Pollock, Center for Applied.
Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC B. Epp 1, V.M. Ghete 2, E. Kneringer 1, D. Kuhn 1, A. Nairz 3 1 Institut für Experimentalphysik,
Licht sind kleine Teilchen
Nuklearmedizinsche Klinik und Poliklinik Klinikum rechts der Isar Technische Universität München Image reconstruction, MR-based attenuation correction,
Production of electricity in Finland By Germany-Group.
KLIMA SUCHT SCHUTZ EINE KAMPAGNE GEFÖRDERT VOM BUNDESUMWELTMINISTERIUM Co2 online.
Olaf Hartmann NPC Austrian Research Promotion Agency FFG EUREKA in Austria Österreichische Forschungsförderungsgesellschaft | Sensengasse 1 | 1090 Wien.
Magnetenzephalogramm, MEG
EUROPÄISCHE GEMEINSCHAFT Europäischer Sozialfonds EUROPÄISCHE GEMEINSCHAFT Europäischer Fonds für Regionale Entwicklung Workpackage 5 – guidelines Tasks.
Fakultät für Gesundheitswissenschaften Gesundheitsökonomie und Gesundheitsmanagement Universität Bielefeld WP 3.1 and WP 4.1: Macrocost.
Physik Fachbereich 1 Institut für Umweltphysik Satellite Based Retrieval of Desert Dust Deposition into the Atlantic Ocean SeaWIFS AOT June 2008 Jäger,
Imperfekt (Simple Past) Irregular or strong verbs
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: Office:
Outline Collaborators HgTe as a 3D topological insulator Sample design
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Timing RPC for prompt gamma.
Pion-Photon Reactions and Chiral Dynamics in Primakoff Processes at COMPASS Markus Krämer on behalf of the COMPASS collaboration supported by: Maier-Leibnitz-Labor.
QUEST-Meeting, 14. Dez. 2007, Offenbach Parametrisierung der Verdunstung in einem 2-Momenten-Schema Axel Seifert Deutscher Wetterdienst, Offenbach Geschäftsbereich.
Mitglied der Helmholtz-Gemeinschaft Questions to HESR 6 th March 2012 PANDA-meetingDieter Prasuhn.
Essay structure Example: Die fetten Jahre sind vorbei: Was passiert auf der Almhütte? Welche Bedeutung hat sie für jede der vier Personen? Intro: One or.
DPG Frühjahrstagung „Teilchenphysik“ Heidelberg, Photon identification in double beta-decay experiments using segmented germanium detectors.
UNIVERSITÄT STUTTGART INSTITUT FÜR STRASSEN- UND VERKEHRSWESEN (ISV) LEHRSTUHL VERKEHRSPLANUNG UND VERKEHRSLEITTECHNIK (VuV) Erfassung von Verkehrskenngrößen.
Premiere Conferencing GmbH
Van der Meer AJ, Feld JJ, Hofer H J. Hepatol Oct 22
High-beta Experiment on
Electronics: Overview
Englisch Grundlagen, Modal Verbs
Hoch-beta Experiment am
K±K± HBT Study with HMPID - Status Report -
Process and Impact of Re-Inspection in NRW
associated to Stealth CMEs
by repeated premix emulsification
CERN – TUD – GSI Webmeeting
Results from CO2 heat pump applications
Ferrite Material Modeling (1) : Kicker principle
Collaborative Webmeeting November 24th, 2010 Geneve / Darmstadt
Institut für Experimentelle
Avalanche-, Debris Flow- and Mudslide RADAR
ELECTR IC CARS Karim Aly University of Applied Sciences.
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
CSL211 Computer Architecture
Zeitlich veränderliche Ströme
Practical Exercises and Theory
Calorimetry as an efficiency factor for biogas plants?
Scenario Framework for the Gas Network Development Plan
Perspektiven der Teilchenphysik KET-Strategie-Workshop
 Präsentation transkript:

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 1 ATHENA - Cold antihydrogen production Production of cold antihydrogen atoms in large quantities Introduction The ATHENA experiment + New results Summary Outlook On behalf of the ATHENA collaboration C. Regenfus University of Zürich H detector Antihydrogen candidate (real data, 4-prong event) Sept. 02: > 50k cold antiatoms produced

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 2 ATHENA - Cold antihydrogen production Motivation Antihydrogen: The simplest antimatter counterpart to matter for testing fundamental physic principles CPT symmetry (Theoretical underpinning of field theories) Gravitational acceleration (Equivalence principle) A very high precision can be achieved by comparing antihydrogen to hydrogen

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 3 ATHENA - Cold antihydrogen production Future: high resolution laser spectroscopy Atomic 1S - 2S transition by two-photon excitation (first order Doppler-free) Lyman   E = 10.2 eV = 2.5 x Hz = 122 nm UV 2 x 243 nm photons (mW) Lifetime of 2S state: 122 ms => precision ~ Cesar et al. (1996) (Laser 3kHz, 150µK) Need: Cold antihydrogen ( T < mK ) Capture in neutral trap Hydrogen reference cell H spectroscopy Gravitation: atomic fountain / interferometry

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 4 ATHENA - Cold antihydrogen production Present physics menu Plasma studies: new kind of plasma imaging Particle losses in trap (Re)combination mechanism Production of cold antihydrogen in larger quantities Investigations Antihydrogen energy distribution (+ inner states) Laser spectroscopy on non trapped atoms Trapping H and/or creation of a H beam

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 5 ATHENA - Cold antihydrogen production The ATHENA collaboration Particle traps + control: INFN, Sez. di Genova, and Dipartimento di Fisica, Università di Genova, Italy EP Division, CERN, Geneva, Switzerland Department of Physics, University of Tokyo, Japan Precision lasers: Department of Physics and Astronomy, University of Aarhus, Denmark Instituto de Fisica, Rio de Janeiro, Centro de Educação Tecnologica do Ceara, Brazil Positron plasma: Department of Physics, University of Wales Swansea, UK Detector + Analysis: Physik-Institut, Zürich University, Switzerland INFN, Sez. di Pavia, and Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Italy Dipartimento di Chimica e Fisica per l'Ingegneria e per iMateriali, Università di Brescia, Italy

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 6 ATHENA - Cold antihydrogen production Experimental overview 15 K, mbar Main ATHENA features: Open access system (no sealed vacuum) Powerful e + accumulation Plasma diagnosis and control High granularity imaging detector Scint.

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 7 ATHENA - Cold antihydrogen production ATHENA Photo

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 8 ATHENA - Cold antihydrogen production Penning traps Trapped electron at B = 3 T, E = 1 eV, U ~ 10 V Cyclotron motion (perpendicular to B) f = 84 GHz, r ~ 1 µm Emission of synchrotron radiation (cooling) t cool ~ 0.3 s Axial motion (along B) f ~ 7 MHz, d ~µm … cm E x B drift (‘magnetron’) (cooling over coupling) f ~ kHz, r ~ mm Single particle Plasma Coulomb coupling parameter: E coul /E therm Electrical screening distance: Debye length ATHENA: Multi-ring Penning trap (choose V z as you like )

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 9 ATHENA - Cold antihydrogen production Antiproton decelerator (CERN)

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 10 ATHENA - Cold antihydrogen production Antiproton capture and cooling with electrons Capture dynamics Capture trap (50 cm) p / AD shot

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 11 ATHENA - Cold antihydrogen production Positron accumulation Accumulation rate: 10 6 e + /s 150 million e + / 5 min After transfer: 75 x 10 6 in mixing trap Positron plasma : r~2mm, l~32mm, n~2.5 x 10 8 / cm 3 Lifetime: ~hours

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 12 ATHENA - Cold antihydrogen production Non destructive positron plasma diagnostics read heat drive Complete model of plasma mode excitation (based on ‘Cold Fluid Theory’ * ) PLASMA SHAPE, LENGTH, DENSITY Plasma temperature change * D. Dubin, PRL 66, 2076 (1991) ~ 30 MHz

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 13 ATHENA - Cold antihydrogen production Detection principle of antihydrogen annihilations H atom dissociates to p and e + by contact with the trap wall or rest gas atoms pN -> charged and neutral pions e + e - -> 511keV photons (back to back) Good spatial resolution (< 1 cm ) of charged vertex ( at least 2 prong events) Time coincidence (~ 1 µs) High rate capability (self triggering) 511 keV opening angle Monte Carlo Measure 1MeV on background of 2GeV

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 14 ATHENA - Cold antihydrogen production Detector development Much effort into R&D Low temperature (~ 140 K) High magnetic field (3 T) Low power consumption Light yield of pure-CsI crystals ? CTE matching (Kapton, silicon, ceramics) Electronic components Full detector installed: August 2001 All photodiodes replaced with APDs: Spring 2002 Compact design (radial thickness 3 cm) High granularity (8K strips, 192 crystals) Large solid angle (>75 %) Workshop Zürich, J. Rochet Silicon micro strip layer Mechanics for 77K

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 15 ATHENA - Cold antihydrogen production Pure-CsI crystals + Avalanche Photo Diodes Read out close up Crystal APD unit Crystal detector performance ~16 times higher light 80K C. Amsler, et al. :Temperature dependence of pure-CsI, scintillation light yield and decay time. NIM A 480, 494–500 (2002). Pure-CsI

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 16 ATHENA - Cold antihydrogen production Full GEANT Monte Carlo simulations E&M cascades, Hadronic Showers (GEISHA) (> 10 keV) Geometry from AutoCAD Module-by-module (in)efficiency taken into account Same analysis routine for MC and data Electrode (r = 1.25 cm) Radial vertex position

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 17 ATHENA - Cold antihydrogen production Antiproton annihilations Antiproton annihilation on the trap wall (real data, 3-prong event) strip hits (inner + outer layer) => p vertex crystals hit (matched to charged tracks) vertex resolution, ~ 4 mm (curvature not resolved) Electrode position (r = 1.25 cm)

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 18 ATHENA - Cold antihydrogen production Plasma imaging (antiprotons only) Powerful plasma and loss diagnostics ! p vertex evolution in time

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 19 ATHENA - Cold antihydrogen production Mixing trap (nested penning trap*) In one mixing cycle (5 min) we mix ~10 4 antiprotons with ~10 8 positrons * G. Gabrielse et al., Phys. Lett. A129, 38 (1988)

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 20 ATHENA - Cold antihydrogen production Cooling of antiprotons by 75 million positrons Rapid cooling (< 20 ms) Decreasing energy of antiprotons Increasing separation of plasmas

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 21 ATHENA - Cold antihydrogen production Antiprotons in the positron plasma Energy loss by dE/dx and thermalization e + cloud (10 8 /cm 3 ) T = 10K … K (by RF heating) Incoming antiproton

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 22 ATHENA - Cold antihydrogen production Antihydrogen production 1. Fill positron well in mixing region with 75·10 6 positrons; allow them to cool to ambient temperature (~15 K) 2.Launch 10 4 antiprotons into mixing region 3.Mixing time 190 s - continuous monitoring by detector (charged trigger) 4.Repeat cycle every 5 minutes (data for 165 cycles) For comparison: “hot” mixing = continuous RF heating of positron cloud (suppression of antihydrogen production)

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 23 ATHENA - Cold antihydrogen production Antiproton annihilation rate (charged trigger rate) Background trigger rate ~ 0.5 Hz High initial rate ~ 100 Hz

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 24 ATHENA - Cold antihydrogen production Analysis Procedure Reconstruct annihilation vertex (103 k) Search for ‘clean’ 511 keV-photons: exclude crystals hit by charged particles + its 8 nearest neighbours ‘511 keV’ candidate = 400… 620 keV no hits in any adjacent crystals Select events with two ‘511 keV’ photons Reconstruction efficiency ~ 0.25 % = “golden” events ! Antihydrogen candidate (real data, 4-prong event) Event reconstruction (165 mixing cycles ~ 2 days)

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 25 ATHENA - Cold antihydrogen production Antihydrogen Signal (“golden” events) Opening angle between two 511 keV photons (seen from charged particle vertex) > 50,000 produced antiatoms (conservative estimate) Background: mixing with hot positrons Comparison with Monte Carlo M. Amoretti et al., Nature 419, 456 (2002)

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 26 ATHENA - Cold antihydrogen production Background measurements Histogram: Antiproton-only data (99,610 vertices, 5,658 clean 2-photon events plotted). Dots: Antiproton + cold positrons, but analyzed using an energy window displaced upward so as not to include the 511 keV photo-peak Opening angle between two 511 keV photons (seen from charged particle vertex) M. Amoretti et al., Nature 419, 456 (2002) Can antiproton annihilations on electrode fake back-to-back signal? No ! 1) Secondary e + within 10 mm ~ 0.1 % 2) Monte Carlo - no peak 3) Measurement - no peak

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 27 ATHENA - Cold antihydrogen production Antihydrogen = main source of annihilations Hot Time distribution of golden events and all annihilations Cold X-Y vertex distribution

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 28 ATHENA - Cold antihydrogen production Physics of antihydrogen production ANTIHYDROGEN VERSUS BACKGROUND ABSOLUTE PRODUCTION RATES DEPENDENCE ON TEMPERATURE ANGULAR DISTRIBUTION PRELIMINARY

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 29 ATHENA - Cold antihydrogen production Opening angle fit Fit result: ~ 2/3 of the events are antihydrogen Fit Result Fit Input MC Hbar Background cos(   ) Data Fit Background PRELIMINARY

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 30 ATHENA - Cold antihydrogen production Vertex spatial distribution fit => Antihydrogen on trap electrodeAntihydrogen on trapped ions or rest gas Compare to cold mix data Average fraction of antihydrogen 65 ± 10 % during mixing ! In 2002, ATHENA produced ± 0.7 ± 0.3 Million antihydrogen atoms PRELIMINARY

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 31 ATHENA - Cold antihydrogen production Rate of antihydrogen production High Initial Rate (> 100 Hz) High S/B (~ 10:1) in first seconds Analysis: 65 ± 10 % antihydrogen ~ 50 % vertex / annihilation PRELIMINARY

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 32 ATHENA - Cold antihydrogen production Pulsed antihydrogen production Mixing time sec Vertex Z position Heat On Vertex Counts Mixing time -> Heat On Switch positron heating Off/On resp. On / Off We observe: Annihilation rate Vertex distribution along z Rise time ~ 0.4 s (Positron cooling time) PRELIMINARY

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 33 ATHENA - Cold antihydrogen production Antihydrogen Production - T dependence RadiativeThree-body  (T) dependenceT -0.5 T -4.5 Final staten > 100 Stability ( re-ionization )highlow Expected rates~ Hz?

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 34 ATHENA - Cold antihydrogen production Summary First production and detection of cold antihydrogen - high positron accumulation rate = fast duty cycle - sensitive detector = observe clear signals High rate production - initial rate > 100 Hz, average rate ~ 10 Hz Antihydrogen dominates annihilation signal (~ 2/3) Pulsed antihydrogen production Temperature dependence measured Antihydrogen production at room temperature

A DPG Frühjahrstagung Aachen C. Regenfus Uni-Zürich 35 ATHENA - Cold antihydrogen production Outlook More … Increase formation rate More antiprotons Laser induced recombination Trapping and cooling... Anti-Hydrogen at E < 0.05 meV ? Dense plasmas in magnetic multipole fields ? Laser cooling? Collisions with ultra-cold hydrogen atoms? Spectroscopy High precision comparison 1S-2S Hyperfine structure Gravitational effects E ~ meV Atom interferometry Study … Formation process Next steps - technology Next steps - physics