Thema: Parabeln [ein Bindeglied zwischen Geometrie und Algebra ]

Slides:



Advertisements
Ähnliche Präsentationen
„Ich aber quadriere den Kreis ...“
Advertisements

Schnittkräfte q A B FBH FA FBV
Abituraufgabe 2008 Geometrie.
Kegelschnitte, andere algebraische Kurven
Polynomial Root Isolation
Steigung m berechnen Man kann die Steigung auch berechnen,
Gruppenwettbewerb. Gruppenwettbewerb Aufgabe G1 (8 Punkte)
• • • • • 3.2 Die projektive Erweiterung des E³
Lineare Funktionen mit der Gleichung y = mx
WR + WS ZEIGEN Neues aus der Mathematik.
Wilhelm-Raabe-Schule Fachbereich: Mathematik Thema: Lineare Funktionen
Körperberechnung Würfel Einheitswürfel Oberfläche Volumen Quader
Dynamische Mathematik
Verblüffend einfache Geometrie von Kurven
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Klicke Dich mit der linken Maustaste durch das Übungsprogramm! Ein Übungsprogramm der IGS - Hamm/Sieg © IGS-Hamm/Sieg 2007 Dietmar Schumacher Die Wertetabelle.
Klicke Dich mit der linken Maustaste durch das Übungsprogramm! Ein Übungsprogramm der IGS - Hamm/Sieg © IGS-Hamm/Sieg 2007 Dietmar Schumacher Zeichnerische.
Klicke Dich mit der linken Maustaste durch das Übungsprogramm! Ein Übungsprogramm der IGS - Hamm/Sieg © IGS-Hamm/Sieg 2007 Dietmar Schumacher Zeichnerische.
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Klicke Dich mit der linken Maustaste durch das Übungsprogramm! Das Lot von einem Punkt auf eine Gerade fällen Ein Übungsprogramm der IGS - Hamm/Sieg ©
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Kapitel 5 Stetigkeit.
Kapitel 3 Analytische Geometrie
Kapitel 4 Geometrische Abbildungen
Thema - Funktionen Mögliche Fragestellungen: Scheitel Nullstellen
Die Lineare Funktion Eine besondere Gerade.
Funktionen.
„Flächenanlegungen“ Einfache Flächenanlegung, gr. parabolé: eine gegebene Fläche F an eine gegebene Strecke a anlegen (d.h. ein Rechteck mit Seite a.
Die Funktionsgleichung
Funktionsgraphen zeichnen
§9 Der affine Raum – Teil 2: Geraden
Grundbegriffe der Schulgeometrie
Zylinder-Prisma-Schnitt
Das Bigalke - Rechteck Gegeben ein Rechteck ABCD. Spiegele es an der Diagonale BD. Wie muss das Ausgangsrechteck dimensioniert sein, damit das gefärbte.
Die Quadratische Funktion
Geometrie Autor: Daniel Orozco IES San Isidoro ( Sevilla )
Lichtbrechung Ein Teil des Lichts wird an der Wasseroberfläche
Zeichnen linearer Funktionen
§3 Allgemeine lineare Gleichungssysteme
Grundwissen Wie lautet die Gleichung aller Parabeln? y = ax² + bx + c
Lernprogramm : „Quadratische Funktionen“
In der Mathematik, Natur und Kunst
Lineare Funktionen und ihre Schaubilder, die Geraden
Abtragen von Strecken P Q O H t 1-t und Daraus folgt:
Gegenseitige Lage von Geraden Schnittpunktberechnung
Lösen von quadratischen Ungleichungen
POCKET TEACHER Mathematik Geometrie
LK-MA - Christopher Schlesiger
Quadrat in Rechteck umwandeln
Steigung und lineare Funktionen
Lernprogramm : „Quadratische Funktionen“ von W. Liebisch
Steigung und lineare Funktionen
Parabeln x ,5 0, x² 9 4 0,25 Funktionsvorschrift:
Parabeln – Magische Wand
Didaktik der Geometrie (7)
Dreieckssätze Pythagoras und Co SFZ 14/15 W.Seyboldt
Zeitreise Eine Signalübertragung mit unendlich hoher Geschwindigkeit ist möglich („Hyperfunk“)! Leider hätte dies drastische Konsequenzen. Einstein hat.
DG3 - Angittern Gerades, quadratisches Prisma, Grundfläche parallel zu
Wir betrachten Potenzfunktionen mit natürlichen geraden Exponenten
Quadratische Funktionen. 1. Die Normalparabel y = x² mit x Є IR x-2 -1,5-0,500,511,52 y1y1 Wertetabelle: 4 2,25 1 0, ,25 4 Die Funktion ist achsen-
Lineare Funktionen habben die Gleichung y = mx + b
Thema - Funktionen Mögliche Fragestellungen: Scheitel Nullstellen
Quadratische Funktionen
Quadratische Funktion
DG5 - Angittern Aufgabenstellung: Buch Raumgeometrie Seite 43 Übung 5.1, 6b Schnitt einer Gerade mit Parallelogramm, beide allgemeine Lage Gerade: g (G1(6/-4/0),
DG3 – Zylinderschnitte Aufgabenstellung: Zwei Zylinder werden geschnitten.
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Die Mittelsenkrechte.
Wahlteil 2016 – Aufgabe B 1 Aufgabe B 1.1 In einem Koordinatensystem beschreiben die Punkte
Lage, Schnitte und Schnittwinkel
 Präsentation transkript:

Thema: Parabeln [ein Bindeglied zwischen Geometrie und Algebra ] Dr. Neidhardt 14.11.03 Thema: Parabeln [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Gliederung: Anwendungsgebiete und Vorkommen von „Parabel“ – Erscheinungen in der Natur Parabeln: Definition, geometrische und physikalische Charakterisierung Parabeln – Ein Bindeglied zwischen Geometrie und Analysis Möglichkeiten der geometrischen Konstruktion von Parabeln und deren Interpretation Konstruktion mit Hilfe des Strahlensatzes Konstruktion durch den Höhen- Kathetensatz Konstruktion mit dem Sehnensatz

Anwendungsgebiete und natürliche Vorkommen von „Parabel“ – Erscheinungen Wie oft die Parabel wird in unserem Alltag auftritt, wird uns meist nicht bewusst.

Zum Beispiel ist die Laufbahn beim Werfen eines Balles eine Parabel Zum Beispiel ist die Laufbahn beim Werfen eines Balles eine Parabel. Der Ball fällt vom höchsten Punkt in einer Kurve, dem Scheitel, in derselben Form wieder zurück, wie er nach oben geworfen wurde. Beide Bögen bilden die Parabel. senkrechter Wurf (Annäherung) schiefer Wurf

Auch bei Springbrunnen fliegen die Wassertropfen auf Parabelbahnen

Beim Feuerwerk sieht man ganze Parabelfamilien…

Die Parabel ist eine ebene Kurve, die zu den Kegelschnitten gehört… Jedoch schneidet die Ebene hier – im Gegensatz zur Hyperbel – nur einen der Kegel

Die Reflexionseigenschaft der Parabel wird in vielen optischen Geräten wie bei Antennen (Parabolspiegeln) ausgenutzt.

Auch bei Solarkraftwerken wie hier im Death Valley kommt die Parabelform zum Einsatz

Wenn ein Wasserglas rotiert, steigt das Wasser an den Rändern höher als innen, der Querschnitt der Wasserfläche bildet eine Parabel

Wenn ein Wasserglas rotiert, steigt das Wasser an den Rändern höher als innen, der Querschnitt der Wasserfläche bildet eine Parabel

Parabeln: Definition, geometrische und physikalische Charakterisierung Geometrische Charakterisierung einer Parabel: Eine Parabel besteht definitionsgemäß aus genau allen Punkten P, deren Abstand von einem festen Punkt F (Brennpunkt) und einer festen Geraden L (Leitlinie) gleich ist. Physikalische Charakterisierung einer Parabel: Ein Lichtstrahl, der parallel zur x-Achse einfällt, wird an der Parabel so reflektiert, dass er durch den Brennpunkt geht. Thema 1. Stunde

Die Gleichung einer Parabelrelation: Der Punkt F heißt Brennpunkt der Parabel Die Gerade L heißt Leitlinie der Parabel

Die Gleichung einer Parabelrelation: Der Punkt F heißt Brennpunkt der Parabel Die Gerade L heißt Leitlinie der Parabel

Die Gleichung einer Parabelrelation: Der Punkt F heißt Brennpunkt der Parabel Die Gerade L heißt Leitlinie der Parabel

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Parabeln – Ein Bindeglied zwischen Geometrie und Analysis

Möglichkeiten der geometrische Konstruktion von Parabeln und deren Interpretation a) Parabelkonstruktion mit Hilfe des Höhen- und Kathetensatzes

, Höhensatz: Pythagoras: daraus hergeleitet – der Höhensatz: und – der Kathetensatz: ,

eine Parabelgleichung x y d eine Parabelgleichung

x y p d ( ) ist die Konstante, welche die Parabelöffnung festlegt. x und y werden jeweils durch den Punkt P1 abgetragen, welcher sich natürlich senkrecht über dem X-Achsen- abschnitt befinden muss. Daher die Hilfskonstruktion des Rechtecks SAP1C

Aufgabe: Zeichne mit Hilfe des Höhensatzes den Graph der quadratischen Funktion, die folgende Gleichung hat: Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ?

Aufgabe: Zeichne mit Hilfe des Höhensatzes den Graph der quadratischen Funktion, die folgende Gleichung hat: Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ?

Aufgabe: Zeichne mit Hilfe des Höhensatzes den Graph der quadratischen Funktion, die folgende Gleichung hat: y=2x2-12x+19 y=2(x2-6x)+19 y=2(x2-2*3x+32)-2*32+19 y=2(x-3)2+1 S(3,1) Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ?

Aufgabe: Zeichne mit Hilfe des Höhensatzes den Graph der quadratischen Funktion, die folgende Gleichung hat: Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ?

Aufgabe: Zeichne mit Hilfe des Höhensatzes den Graph der quadratischen Funktion, die folgende Gleichung hat: Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ? Leitlinie L

Aufgabe: Zeichne mit Hilfe des Höhensatzes den Graph der quadratischen Funktion, die folgende Gleichung hat: Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ? Leitlinie L

b) Parabelkonstruktion mit Hilfe des Sehnensatzes

Sehnensatz Schneiden sich zwei Sehnen im Kreis, dann ist das Produkt der beiden Abschnitte auf einer Sehne gleich dem Produkt der beiden Abschnitte auf der anderen Sehne.

eine Parabelgleichung In dem Spezialfall nun mit : y x und x d eine Parabelgleichung

Mit Hilfe einer kleinen Hilfskonstruktion [K1(S,x1); K2(R,y)] werden nun die jeweiligen X- bzw. Y-Achsenabschnitte der Sehensatz- konstruktion durch die Spur von P1, P2 oder P3, P4 ins Koordinatensystem übertragen.

Aufgabe: e Was bewirkt eine Veränderung von e? Wo liegen in diesem Falle die Leitlinie L und der Brennpunkt F ?

Aufgabe: e Was bewirkt eine Veränderung von e? e entspricht dem Sehnenabschnitt p, der die Parabelöffnungskonstante darstellt. Verlängert man die Strecke e, wird die Parabelöffnung größer, da d in der Parabelformel als Kehrwert eingeht. Wie kann ich beim Sehnensatz die Lage der Leitlinie L bzw. des Brennpunktes F herausfinden ? Gleichung aus Sehnensatz: allgemeine Parabelgleichung:

Aufgabe: e Was bewirkt eine Veränderung von e? e entspricht dem Sehnenabschnitt d, der die Parabelöffnungskonstante darstellt. Verlängert man die Strecke e, wird die Parabelöffnung größer, da d in der Parabelformel als Kehrwert eingeht. Wie kann ich beim Sehnensatz die Lage der Leitlinie L bzw. des Brennpunktes F herausfinden ? Gleichung aus Sehnensatz: allgemeine Parabelgleichung:

Aufgabe: e Was bewirkt eine Veränderung von e? e entspricht dem Sehnenabschnitt p, der die Parabelöffnungskonstante darstellt. Verlängert man die Strecke e, wird die Parabelöffnung größer, da d in der Parabelformel als Kehrwert eingeht. Wie kann ich beim Sehnensatz die Lage der Leitlinie L bzw. des Brennpunktes F herausfinden ? Gleichung aus Sehnensatz: allgemeine Parabelgleichung:

b) Parabelkonstruktion mit Hilfe des Strahlensatzes

d

Der Strahlensatz: die Strahlensatzfigur gibt uns zwei Parallelen [ || ] wobei D,E so gewählt wurden, dass sie auf einem Kreis K um A liegen. dies ermöglicht uns in der Strahlensatzformel A mit zu sagen, dass und somit gilt ; nach y aufgelöst ergibt sich: - eine Parabelgleichung!!

Nun haben wir einen x- und einen y- Achsenabschnitt und können ebenfalls wieder mit einer Hilfskonstruktion aus K1(0, ) um den Ursprung die X-Koordinate unserer Parabel festlegen. Mit Hilfe zweier weiterer Kreise K2(+X, ) und K3(-X, ) um jeweils diese X-Koordinaten haben wir die Y-Spurlinie und damit den Graphen unserer konstruierten Parabel. Durch bewegen des Punktes D im Programm GeoNext, werden die Parabeläste gezeichnet.

Aufgabe: 1. Welche Eigenschaft muss die Strahlensatzkonstruktion aufweisen, damit Parabelkonstruktion überhaupt ermöglicht wird? 2. Wie verhält sich die Parabel, wenn der Neigungswinkel, den die Parallelen in der Strahlensatzkonstruktion zur Grundlinie einnehmen verändert wird, wie wenn d verkleinert bzw. vergrößert wird?

Aufgabe: 1. Welche Eigenschaft muss die Strahlensatzkonstruktion aufweisen, damit Parabelkonstruktion überhaupt ermöglicht wird? E,D müssen auf einem Kreis um A liegen => Parabelgleichung 2. Wie verhält sich die Parabel, wenn der Neigungswinkel, den die Parallelen in der Strahlensatzkonstruktion zur Grundlinie einnehmen verändert wird, wie wenn d verkleinert bzw. vergrößert wird?

Aufgabe: 1. Welche Eigenschaft muss die Strahlensatzkonstruktion aufweisen, damit Parabelkonstruktion überhaupt ermöglicht wird? E,D müssen auf einem Kreis um A liegen => Parabelgleichung 2. Wie verhält sich die Parabel, wenn der Neigungswinkel, den die Parallelen in der Strahlensatzkonstruktion zur Grundlinie einnehmen verändert wird, wie wenn d verkleinert bzw. vergrößert wird? wenn d durch Bewegen von a geändert wird, verändert sich die Parabelöffnung

Aufgabe: 3. Welche Besonderheit muss in der Strahlensatzkonstruktion vorliegen, damit eine Normalparabel entsteht? 4. Wie finde ich meine Leitlinie bzw. meinen Brennpunkt?

Aufgabe: 3. Welche Besonderheit muss in der Strahlensatzkonstruktion vorliegen, damit eine Normalparabel entsteht? 4. Wie finde ich meine Leitlinie bzw. meinen Brennpunkt?

Aufgabe: 3. Welche Besonderheit muss in der Strahlensatzkonstruktion vorliegen, damit eine Normalparabel entsteht? 4. Wie finde ich meine Leitlinie bzw. meinen Brennpunkt? Parabel aus dem Strahlensatz allgemeine Para- belgleichung

Aufgabe: 3. Welche Besonderheit muss in der Strahlensatzkonstruktion vorliegen, damit eine Normalparabel entsteht? 4. Wie finde ich meine Leitlinie bzw. meinen Brennpunkt? Parabel aus dem Strahlensatz allgemeine Para- belgleichung und F und L liegen jeweils bei bzw. auf dem Lot auf x durch S

Diese Konstruktion einer Parabel durch den Strahlensatz ist nur möglich, indem ich mir geeignete Strecken günstig wähle und gewisse Parameter (Einschränkungen) in Kauf nehme... hier: Die Punkte E,D liegen auf einem Kreis um A, wodurch sich eine Parabelgleichung aufstellen lässt.