Onsagersche Gleichung. Energetische Beziehungen

Slides:



Advertisements
Ähnliche Präsentationen
Verallgemeinerte Netzwerke in der Mechatronik I
Advertisements

Kapitel 5: Wärmelehre 5.1 Temperatur und Wärme.
Geschichte ihrer Formulierung
Vorlesung 28: Roter Faden: Heute:
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
3. Wärmelehre Materiemenge stellt ein Ensemble von sehr vielen Teilchen dar Mechanisches Verhalten jedes einzelnen Teilchens (Flugbahn) nicht bekannt und.
Temperatur, Druck im mikroskopischen Bild
Verbrennungsvorgang Beim Verbrennen wird Sauerstoff verbraucht und es entsteht Kohlenstoffdioxid und Wasserdampf. Kohlenstoffdioxid reagiert mit Kalkwasser,
3 Die chemische Reaktion 3.3 Zustandsdiagramme
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Innere Energie Wagen stößt gegen die Wand
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße (Energieübertrag.
Aggregatszustand Aggregation: Anordnung von Teilchen in einem Gegenstand. (von lat. aggregare anhäufen, zusammensetzen) 3 Grundprinzipien der Teilchenanordnung:
Aggregatszustand Aggregation: Anordnung von Teilchen in einem Gegenstand. von lat. aggregare anhäufen, zusammensetzen Teilchenmodell: Aufbau der Materie.
Innere Energie Wagen stößt gegen die Wand
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße - mittlere.
Von Molekülen zu Systemen
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Grundlagen der Physiologie
Energieformen und Energiequellen
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Die Hauptsätze der Thermodynamik
Hauptsätze der Thermodynamik
Kapitel 7: Stichworte Zustandsgröße, Zustandsgleichung
Einführung in die Physik für LAK
Zeitpfeile in der Physik
Heißluftballon Der aufsteigende Heißluftballon nutzt Wärme, um Hubarbeit zu verrichten Das Volumen des Ballons beträgt etwa 4000m3. Ein Teil der erwärmten.
Arbeit, Energie.
...warum ein allein gelassenes System immer unaufgeräumter wird...
Arbeit, Energie.
Wdh. Letzte Stunde 1.Hauptsatz
Arbeitsfluids Fluid besteht aus Atomen/Molekülen Bild = Wasser flüssig
Temperatur, Druck im mikroskopischen Bild
Ein Vortrag von Verena Pfeifer
Ideale Lösungen z.B. Forsterit - Fayalit MgSi0.5O2 FeSi0.5O2 ??? ???
Eine Eigenschaft fester Körper
Hydro- und Aerostatik Der Druck.
Die Entropie Maßzahl für die Wahrscheinlichkeit der Verteilung mikroskopischer Zustände.
Erhaltung von Energie, Impuls und Drehimpuls
Hydro- und Aerodynamik
Erhaltung von Energie, Impuls und Drehimpuls
Gekoppelte Schwingungen
Symmetrie in dynamischen Systemen
Die Aggregatzustände Gasförmig, flüssig, fest
Arbeit, Energie, Energieerhaltung, Leistung
Wirkung der Temperatur auf physikalische Eigenschaften
Brownsche Molekularbewegung und Diffusion
Impuls und Impulserhaltung
Beziehungen zwischen den nichtlinearen Dielektrika
Hydro- und Aerostatik Der Druck.
Kapitel 3: 1. Hauptsatz der Thermo-dynamik und der Energiebegriff
Lehrplan Kenntnis der grundlegenden physikalischen Gesetze
Wärme- und Strömungstechnik II
7. Zweiter Hauptsatz der Thermodynamik Carnot-Maschine Wirkungsgrad
Hauptsätze Wärmelehre
Diffusion (Stofftransport)
Kapitel 3.6: Kalorische Zustands-gleichung für die Enthalpie
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Kapitel 3.5 Der 1. Hauptsatz für stationäre Fließprozesse
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Galilei Leibniz Newton‘s Mechanics Stellar Orbits Gravity Gaub
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Kapitel 3: 1. Hauptsatz der Thermo-dynamik und der Energiebegriff
3 Die chemische Reaktion 3.5 Das chemische Gleichgewicht
von Fuchs Engelbert Fachdidaktik
Weitere Lernhilfen im Internet...
Elektrochemische Thermodynamik
Thermische Energie und Wärme
Ericsson Kreisprozess ©Wolflehner Marcel. Definition Ist ein thermodynamischer Kreisprozess Erfinder Johan Ericsson (schwedischer Ingenieur) Dient als.
Kraft, Feld, Potenzial und potenzielle Energie am Beispiel Gravitation
 Präsentation transkript:

Onsagersche Gleichung. Energetische Beziehungen . . .

Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m, ... T T T, V, p, m, ... V/2 V/2 p p m/2 m/2 extensive Grösse: ändert ihren Wert, wenn das System in kleinere Teilsysteme zerlegt wird (V, m, ...) intensive Grösse: behält den Wert, wenn das System in kleinere Teilsysteme zerlegt wird (T, p, ...)

Volumen, Volumenstromstärke, Volumenstromdichte Extensive Grössen Quantitätsgrössen die sich mit der Grösse („Extension”) des beobachteten Systems ändert additive Grössen im Gleichgewicht: kein Transport der extensiven Grösse während Transport diese Grösse wird transportiert z.B. Volumen, Volumenstromstärke, Volumenstromdichte

Intensive Grössen Qualitätsgrössen im Gleichgewicht für die Teile des Systems und für das Ganze System dieselben sind ↔ homogene Verteilung die Inhomogenität der intensiven Grösse verursacht Transportprozesse Ausgleich z.B. p, T, j, m, c, ... T Ausgleich  T intensive Gr. m addiert sich  m extensive Gr. Cola + Eis = kalte Cola

A B x1 x2 x3 x4 x wenn dann, die Inhomogenität von System A ist grösser als die von System B die Charakteristik der Inhomogenität: Gradient der intensiven Grösse Druckgradient

Verbindet man in einem Gravitationsfeld Punkte mit gleichem Gravitationspotential, so erhält man Äquipotentialflächen (Höhenlinien) Höhenlinien: alle Punkte gleicher Höhe werden durch eine Kurve verbunden, die Dichte der Höhenlinien representiert die Inhomogenität des Gravitationsfeldes (-1) x Gradientvektor grosse Inhom. kleine Inhom.

Onsager Verallgemeinerte Beschreibung d. Transportprozesse Die Inhomogenität einer intensiven Grösse verursacht den Transport der entsprechenden extensiven Grösse. Die Stromdichte einer extensiven Grösse (J) und der negativen Gradient der intensiven Grösse (X) sind proportional zueinander L: Onsager Koeffizient („Leitfähigkeit”) X: thermodynamische Kraft

Zusammenfassung Wechsel-wirkung fliessende extensive Grösse thermodynami-sche Kraft elektrische Q (Ladung) Ohm mechanische V (Volumen) Hagen-Pioseuille chemsiche ni (Stoffmenge) Fick thermische E (Energie) Fourier

Zustandsfunktionen Die innere Energie Zustandsfunktion: ihre Grösse eindeutig durch den Zustand des Systems bestimmt ist. Änderung der Zustandsfunktion ist vom Weg unabhängig. Die hängt nur von den Anfang- und Endzustände ab. Die innere Energie Die innere Energie eines Systems ist die Energie die die Atome/Moleküle besitzen: Es ist die Summe der kinetischen Energie + die potentielle Energie der Atome, die miteinander in Wechselwirkung stehen (d.h. auch die Bindungsenergie)

Die innere Energie Gase Flüssigkeiten Festkörper Atome kinetische E. kin.+Wechselw. Vibration+Ww. Moleküle kin.+Bindungs.+Vibr. kin.+Ww.+Bind+Vibr Vibration+Ww.

Verschiedene Arten von thermodynamischen Systemen einzelne Zelle Reaktionsgefäss Thermoskanne

0. Hauptsatz der Thermodynamik (4. Hautpsatz) Erfahrungstatsache: Die isolierte Systeme (ohne Energieabgabe an die "Aussenwelt", oder Energiezufuhr von der "Aussenwelt") haben im thermischen Gleichgewicht nach ausreichend langer Zeit überall dieselbe Temperatur.

1. Hauptsatz der Thermodynamik (Satz der Energieerhaltung) Änderung des Energiegehaltes eines Systems (DU) ist gleich der Summe der ausgetauschten Wärmeenergie (Q) und der ausgetauschten mechanischen Energie (d.h. Arbeit W): DU=Q+W Q ist positiv bei Wärmeaufnahme W ist positiv wenn die Arbeit an dem System geleistet wurde.

Mechanische Arbeit DV=VEnd-VAnfang bei Kompression DV ist negativ F A DV so klein ist, dass die Änderung von p vernachlässigt werden kann

Isochore Prozesse (V=Konst) Isobare Prozesse (p=Konst) DU=Q+W DU=Q+W, DU=Q - pDV V=Konst.  DV =0  keine mech. Arbeit DU=Q p p A B B -DW V In den lebenden Systemen laufen die themodynamische Prozesse bei konstantem Druck ab. A V

Die Enthalpie Eine andere Zustandsfunktion: Enthalpie: H=U+pV bei isobaren Prozessen: DH=DU+D(pV)=DU+DpV+pDV= Q-pDV +pDV=Q bei isobaren Prozessen Dp=0 DU=Q-pDV DH=Q

Die Entropie phenomenologische Definition: Einheit: J/K „Mass der Anordnung“ zB: Schmelze von Eis bei 0°C: Eis + Wärme → Wasser geordneter Kristall (Kristallgitter) ungeordnete Moleküle

Die statistische Definition der Entropie k Boltzmannsche Konstante w thermodynamische Wahrscheinlichkeit des Zustandes thermodynamische Wahrscheinlichkeit = Anzahl der Mikrozustände, die zu einem Makrozustand des Systems gehören. thermodynamische mathematische Wahrscheinlichkeit Wahrscheinlichkeit 1

Makro- und Mikrozustände Makrozustände nlinks Mikrozustände Anz. Makrozustand ist durch p, V, T, n … (makroskopische Grössen) bestimmt. Mikrozustand ist durch Position und Geschwindigkeit der Teilchen (Atome, Moleküle) angegeben. 4 abcd 1 3 abc, abd, 4 acd, bcd 2 ab, ac, ad, 6 bc, bd, cd 1 a, b, c, d 4 0 - 1

2. Hauptsatz der Thermodynamik Bei spontan laufenden Prozesse: DS≥0 In reversiblen Prozessen DS=0 Bei irreversiblen Prozessen DS>0 wEnd >wAnfang Die Prozesse laufen spontan in die Richtung der Erhöhung der thermodynamischen Wahrscheinlichkeit