Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Clemens Simmer Einführung in die Meteorologie (met210) - Teil VI: Dynamik der Atmosphäre.

Ähnliche Präsentationen


Präsentation zum Thema: "Clemens Simmer Einführung in die Meteorologie (met210) - Teil VI: Dynamik der Atmosphäre."—  Präsentation transkript:

1 Clemens Simmer Einführung in die Meteorologie (met210) - Teil VI: Dynamik der Atmosphäre

2 2 VI Dynamik der Atmosphäre 1.Kinematik –Divergenz und Rotation –Massenerhaltung –Stromlinien und Trajektorien 2.Die Bewegungsgleichung –Newtonsche Axiome und wirksame Kräfte –Navier-Stokes-Gleichung –Skalenanalyse 3.Zweidimensionale Windsysteme –natürliches Koordinatensystem –Gradientwind und andere –Reibungseinfluss auf das Vertikalprofil des Windes Dynamische Meteorologie ist die Lehre von der Natur und den Ursachen der Bewegung in der Atmosphäre. Sie teilt sich auf in Kinematik und Dynamik im engeren Sinne

3 3 VI.2 Die Bewegungsgleichung Die Newtonschen Axiome Die wirksamen Kräfte –Druckgradient –Schwerkraft –Reibungskraft –Scheinkräfte (Zentrifugal-, Corioliskraft) Die Navier-Stokes-Gleichung Skalenanalyse –geostrophische Approximation –hydrostatische Approximation –geostrophischer Wind im p-Koordinatensystem

4 4 IV.2.1 Bewegungsgleichung im Inertialsystem Im kräftefreien Raum bewegt sich ein Körper mit konstanter Geschwindigkeit. Auf angreifende Kräfte reagiert ein Körper mit einer Beschleunigung (auch Definition der Masse). Greift eine Kraft an einem Körper an, so wirkt eine gleiche Kraft mit umgekehrtem Vorzeichen (actio = reactio). Unterschiedliche Kräfte addieren sich vektoriell zur Gesamtkraft. Die Newtonschen Axiome, die nur in einem Inertialsystem gelten, sind der Ausgangspunkt für die Bewegungsgleichung auf der rotierenden Erde.

5 5 Wirksame Kräfte In einem Inertialsystem gilt nach Axiom 2 und dem Korrolar

6 6 Druckgradientbeschleunigung B A x 0, y 0, z 0 ΔxΔx ΔzΔz ΔyΔy x z y An allen Wänden des Volumens V = Δx Δy Δz wirkt der Luftdruck als Impulsflussdichte: p=Kraft/Fläche =Impuls/(Zeit x Fläche) Fläche A: p(x 0 + Δx/2)p(x 0 )+(p/x)(Δx/2) Fläche B: p(x 0 - Δx/2)p(x 0 ) -(p/x)(Δx/2) Nettoimpulsflussdichte (Druck) in x-Richtung p(x 0 + Δx/2)-p(x 0 - Δx/2)- (p/x)Δx Nettokraft (Druck x Fläche) K x =­(p/x)Δx (ΔyΔz)= ­(p/x)V massenspezifische Kraft (Beschleunigung) f x =K x /m=­(p/x)V/m= ­(1/ρ)(p/x)

7 7 Schwerebeschleunigung Im Inertialsystem dürfen wir die Zentrifugalbeschleunigung durch die Erdrotation nicht einbeziehen. Durch die Abplattung der Erde ist die Newtonsche Anziehung nur an den Polen und am Äquator senkrecht zur Erdoberfläche. Also gilt

8 8 Reibungskraft (1) x, y, oder z Austausch von Molekülen zwischen den Schichten unterschiedlicher Geschwindigkeit durch thermische Bewegung = molekulare Reibung Austausch von Luftpaketen zwischen den Schichten unterschiedlicher Geschwindigkeit durch Turbulenz = turbulente Reibung « Prinzip der Reibung: Analog zum Druck ist Reibung als Impulsaustausch zu sehen, allerdings nun parallel zu den Grenzflächen.

9 9 Reibungskraft (2) Ansatz über Schubspannung =Impulsaustausch senkrecht zur Bewegungsrichtung Intuitiv proportional zu Zähigkeit β und Windscherung u/z Betrachte zunächst Reibung durch x- Impulsaustausch entlang z-Richtung ΔxΔx ΔyΔy ΔzΔz x 0, y 0, z 0 τ xz ist der Schub in Richtung x durch Impulsaustausch in Richtung ±z. τ xz wirkt oben und unten am Volumen Die Differenz bewirkt einen Nettoschub für das Volumen.

10 10 Reibungskraft (3) τ xz (z 0 +Δz/2) = 0 τ xz (z 0 -Δz/2) > 0 Δτ xz = τ xz (z 0 +Δz/2)- τ xz (z 0 -Δz/2)<0 Abbremsung τ xz (z 0 +Δz/2) > 0 τ xz (z 0 -Δz/2) < 0 Δτ xz = τ xz (z 0 +Δz/2)- τ xz (z 0 -Δz/2)»0 starke Beschleunigung τ xz (z 0 +Δz/2) >0 τ xz (z 0 -Δz/2) > 0 Δτ xz = τ xz (z 0 +Δz/2)- τ xz (z 0 -Δz/2)~0 weder Abbremsung noch Beschleunigung Entscheidend für Abbremsung oder Beschleunigung ist also nicht der Impulstransport selbst, sondern dessen räumliche Änderung (Konvergenz, Divergenz): Konvergenz von Impuls beschleunigt, Divergenz bremst. z x

11 11 Reibungskraft (4) Berechnung der Nettokraft (=Nettoimpulsflussdichte x Fläche) in x- Richtung: Laminare und turbulente Strömungen (Einsetzen von τ )

12 12 Reibungskraft (5) Weiter: Neben τ xz existieren noch τ xy und τ xx, und analog für die anderen Richtungen τ yx, τ yy und τ yz, und τ zx, τ zy und τ zz. Die τ ii sind schon durch die Druckgradientkraft (Impulstransport senkrecht zu den Würfeloberflächen) erledigt! Zusammengefasst: Schubspannungstensor

13 13 Bewegungsgleichung für die Atmosphäre im Inertialsystem In der Bewegungsgleichung für das Inertialsystem treten Coriolis- und Zentrifugalbeschleunigung nicht auf! Ein brauchbares Inertialsystem ist ein in der Sonne verankertes Koordinatensystem, das seine Achsen starr am Fixsternhimmels ausrichtet.

14 14 Übungen zu VI Berechne den Vektor der Druckgradientbeschleunigung in Bodennähe, wenn bei p=1000 hPa und einer Temperatur von 20°C der Luftdruck von Westen nach Osten um 5 hPa auf 100 km abnimmt und die Atmosphäre hydrostatisch geschichtet ist. 2.Wie groß ist die Zentrifugalbeschleunigung durch die Erddrehung am Äquator, und wie groß ist dort die Gravitationsbeschleunigung? 3.Wie müsste sich das Windprofil über eine Distanz von 1 Meter ändern, damit die molekulare Reibung und die turbulente Reibung in die Größenordnung der Schwerebeschleunigung kommt?


Herunterladen ppt "Clemens Simmer Einführung in die Meteorologie (met210) - Teil VI: Dynamik der Atmosphäre."

Ähnliche Präsentationen


Google-Anzeigen