Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5.

Ähnliche Präsentationen


Präsentation zum Thema: "4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5."—  Präsentation transkript:

1 4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5. Anwendungen

2 Endliche Markov-Ketten Der Aktienkurs der ZB-Aktie zeige das folgende etwas merkwürdige Verhalten: - Wenn der Kurs heute gegenüber gestern gestiegen ist, dann steigt er morgen ebenfalls mit der Wahr- scheinlichkeit 2/3 und fällt morgen mit der Wahr- scheinlichkeit 1/3 (gegenüber heute). - Ist jedoch der Kurs heute gegenüber gestern gefallen, dann fällt er morgen ebenfalls mit der Wahr- scheinlichkeit 3/4 und steigt morgen mit der Wahr- scheinlichkeit 1/4 (gegenüber heute).

3 Wir versehen jeden Tag mit einem Plus (+) oder mit einem Minus (-) je nachdem, ob der Kurs an diesem Tag gegenüber dem Vortag gestiegen oder gefallen ist. Dann hängt die Prognose dafür, ob der Kurs morgen gegenüber heute steigt oder fällt, nur davon ab, ob die Aktie heute mit einem + oder mit einem – versehen ist /3 1/3 1/4 3/4

4 + - 1/3 1/4

5 Problem 1 Problem 1: Wie groß ist die Wahrscheinlichkeit, in 10 Tagen einen Minus-Tag zu haben, wenn heute ein Plus-Tag ist? Problem 2 Problem 2: Wie entwickelt sich die Wahrscheinlichkeit, in n Tagen einen Minus-Tag zu haben, wenn heute ein Plus-Tag ist, für großes n? Strebt diese Wahrscheinlichkeit für n gegen einen festen Wert? Was passiert, wenn man von einem Minus-Tag aus startet?

6 Das stochastische Verhalten einer Markov-Kette wird vollständig bestimmt durch Übergangsmatrix - die Übergangsmatrix P und Anfangsvektor - den Anfangsvektor π Die Eingänge der nten Potenz der Übergangsmatrix sind die Übergangswahrscheinlichkeiten in n Schritten.

7 Berechnung der nten Potenz von P mit Mitteln Linearen Algebra der Linearen Algebra (Eigenwerte und Eigenvektoren).

8 /4 1/2 3/4 1/2 1

9 Grenzverhalten von Markov-Ketten irreduzibel Falls die Markov-Kette irreduzibel ist (d. h. es gibt eine Zahl N, so dass jeder Zustand von jedem Zustand aus in N Schritten erreichbar ist): Die Wahrscheinlichkeiten in n Schritten vom Zustand i aus zum Zustand j zu gelangen konvergieren für n gegen eine von i unabhängigen Wert α j. Der Vektor α ist der einzige Wahrscheinlichkeitsvektor, der der Gleichung α P = α genügt.

10 Die Maus in der Wohnung! Sie geht jeweils von einem Zimmer zu einem zufälligen Nachbarzimmer. Wie groß ist ihre Gewinnchance ? 5 4 KATZE Verlustzustand 1 MAUS Startzustand 2 3 KÄSE Gewinnzustand (Vorlesung Prof. Bandt)

11 Mittelwertsregel für Gewinnwahrscheinlichkeiten g i : Wahrscheinlichkeit zu gewinnen, wenn man von i aus startet g i = p ij g j j = 1 k Mittelwertsregel

12 /2 1/3 1/2 1/3

13 m-1 p p p p q q q q m Zwei Spieler A und B Kapital von A: a Kapital von B: b Gesamtkapital: m = a + b Gewinnwahrscheinlichkeiten Berechnung der Gewinnwahrscheinlichkeiten für A und für B

14 p p p p q q q q q m Ruin des Spielers Ruin-Wahrscheinlichkeit Berechnung der Ruin-Wahrscheinlichkeit für A

15 Erneuerung von Geräten (Kartenhaus-Prozess) N

16 Berechnung der Erneuerungswahrscheinlichkeit für n Erneuerungssatz

17 Anwendungen von Markov-Ketten Warteschlangen-Modelle Lagerhaltung Krankenstand in einem Betrieb und viele weitere ….

18 III. Induktive Statistik 1. Schätztheorie 1.1. Grundbegriffe, Stichproben 1.2. Maximum-Likelihood-Schätzer 1.3. Erwartungstreue Schätzer 1.4. Konfidenzintervalle 1.5. Spezialfall Binomial-Verteilung 2. Spezialfall Normalverteilung 2.1. Student- und Chi-Quadrat-Verteilung 2.2. Konfidenzintervalle

19 3. Tests 3.1. Grundbegriffe 3.2. Tests einfacher Hypothesen (Neyman-Pearson-Test) 3.3. Tests zusammengesetzter Hypothesen 3.4. Vergleich zweier unabhängiger Stichproben 3.5. Chi-Quadrat-Tests 3.6. Kolmogorov-Smirnov-Test 3.7. Einfache Varianzanalyse

20 Beschreibende Statistik (= Deskriptive Statistik) Beschreibung von Datenmaterial Schließenden Statistik (= Induktive Statistik) Analyse von Datenmaterial, Hypothesen, Prognosen 1. Semester 2.Semester Wahrscheinlich- keitstheorie 1. Semester


Herunterladen ppt "4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5."

Ähnliche Präsentationen


Google-Anzeigen