Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Vorlesung Computergraphik I WS 1999/2000 Prof. Dr. Guido Brunnett Fakultät für Informatik Graphische Datenverarbeitung und Visualisierung TU Chemnitz Oktober.

Kopien: 1
Vorlesung Computergraphik I -Lehrerweiterbildung- WS 1999/2000 Prof. Dr. Guido Brunnett Fakultät für Informatik Graphische Datenverarbeitung und Visualisierung.

Ähnliche Präsentationen


Präsentation zum Thema: "Vorlesung Computergraphik I WS 1999/2000 Prof. Dr. Guido Brunnett Fakultät für Informatik Graphische Datenverarbeitung und Visualisierung TU Chemnitz Oktober."—  Präsentation transkript:

1 Vorlesung Computergraphik I WS 1999/2000 Prof. Dr. Guido Brunnett Fakultät für Informatik Graphische Datenverarbeitung und Visualisierung TU Chemnitz Oktober 1999

2 0. Einführung 0.1 Klassifizierung der Graph. DV ISO Definition: GDV besteht aus den Methoden zur Datenkonver- tierung zwischen Rechner und graph. Endgeräten (Ein-/Ausgabe) Klassifizierung nach Rosenfeld '72: Eingabe Ausgabe Bild BildverarbeitungComputergraphik Beschreibung Bild BeschreibungBildanalysediverses

3 (generative) Computergraphik (Computer Graphics) behandelt die Erzeugung von Bildern durch einen Computer, ausgehend von einer geometrischen Beschreibung der Bildinhalte darzustellende Szene Modell der Szene virtuelles Bild Bild auf dem Ausgabegerät Modellierung abstrakte Abbildung Ausgabe geometrische Modellierung: Techniken zur Erzeugung und Manipulation rechnerinterner Darstellungen dreidimensionaler Objekte 3D-Szene: geom. Modell + Material + Licht + Kamera Rendering: Prozess der Konvertierung der Szenen- beschreibung zur Ausgabe auf graph. Endgerät

4 Beispiel 3D-SzeneProjektion virtuelles BildAusgabe

5 Hierarchische Darstellung der Szene graph. Primitive zusammengesetzte Objekte 2D-Szene Datenstruktur

6 Zentrale Anwendungen der CG Visualisierung in Wissenschaft, Technik und Medizin CAD Prozessüberwachung und -steuerung Graph. Aspekte von Informationssystemen (z. B. geographische IS) Werbegraphik Unterhaltungsindustrie Ausbildung

7 Aspekte der CG Modellierung (von geom. Elementen bis zu virtuellen Welten) Aufbereitung komplexer Daten zur Visualisierung Photorealistische Darstellung Künstlerische Darstellung Animation Graphische Interaktion Virtuelle Realität Erweiterte Realität (augmented reality)

8 Bildverarbeitung (Image Processing) Bild:Matrix von n x m Bildpunkten (pixeln) mit zugeordnetem Farbwert 1m 1 n BV besteht aus Methoden, die Darstellung eines Bildes zu verändern zum Zweck der Bildverbesserung (z. B. Kontrastvergrößerung, Bes. v. Störungen) Bildauswertung (z. B. Größenbestimmung, Konturerfassung) Zeichenerkennung

9 Bildanalyse (Picture Analyses, Computer Vision) befasst sich mit der Rekonstruktion einer 3D-Szenen- beschreibung aus der Bildinformation. Hierzu: Zerlegung des Bildes in Urbilder, d. h. bekannte graph. Objekte (wie Dreiecke, Kreise) Anwendungen: Navigation von Robotern, Steuerung von Maschinen etc. Zsh zwischen den Teilgebieten der GDV Datenstruktur (3D) Bild (2D) Bildverarbeitung BildanalyseComputergraphik

10 CG I 0. Einführung 1. Grundlagen 1.1Grundlegendes über graph. Systeme 1.2Hardwarekomponenten graph. Systeme 1.3Farbmodelle 2. Elemente der 2D-Computergraphik 2.1Koordinatensysteme u. Transformationen in 2D 2.2Windowing und Clipping 2.3Rasterisierung von graph. Primitiven 3. Betrachtungstransformationen 3.1Koordinatensysteme u. Transformationen in 3D 3.2Projektionen 3.3Durchführung der Betrachtungstransformationen 3.43D-Clipping

11 4. Entfernen verdeckter Linien und Flächen 5. Beleuchtung und Schattierung 6. Textur 7. Animation

12 Literatur: Encarnacao, Straßer, Klein: Graph. DV 1 + 2, Oldenbourg 1996 Foley, van Dam, Feiner, Hughes: Computer Graphics, Addison Wesley 1993 Watt: 3D Computer Graphics, Addison-Wesley 1993

13 Lehrveranstaltungen der Professur CGV: 5. Sem. CG I (2/2/0) Geom.Grundl. 6. Sem. CG II (2/0/0) Geom.Modell. (2/2/0) 7. Sem. Bildverarbeitg. Seminar Graphik-Prakt. 8. Sem. Modeling Prakt.

14 1. Grundlagen 1.1 Grundlegendes über graph. Systeme und graph. Daten Modellkonfiguration graph. Systeme Komponenten: Anwendungssystem(z.B. CAD-System) Graphiksystem(z.B. GKS, PHIGS) graph. Peripherie(Sichtgeräte, Eingabegeräte)

15 Graph. Datenstrukturen wesentliche Einflussfaktoren: Funktionalität der graph. Systeme passiv interaktiv Dimension der Darstellung statisch oder bewegt Anforderungen der Anwendung z. B. Automobilbau, Geographisches IS Die Datenstrukturen jeder Systemkomponente werden bei der Visualisierung auf Datenstrukturen des jeweils darunter befindlichen Systems abge- bildet graph. Daten der Anwendung Datenstrukturen des graph. Systems Datenstrukturen graph. Geräte

16 Modelldaten = Daten des Anwendungssystems Aus den Modelldaten lassen sich geom. Daten wie Objektart Objektparameter ableiten. Diese dienen als Grundlage für die Auswahl graph. Primitive. Bsp.: Objektart: Kugel graph Primitiv: Polyeder mit n Seitenflächen Der Modellkontext bestimmt oft nichtgeometrische graph. Attribute (z.B. Farbe, Linientyp) Topologische Informationen des Anwendungs- modells werden ebenfalls in die graph. DS über- nommen (z.B. in Form von Graphen).

17 Datenstrukturen des graphischen Systems graph. Primitive für 2D-Graphik Minimalsatz: Punkte und Marker Linie (Strecke) Polygonzug Flächen (gefüllter Polygonzug) Punktmenge (Feld von Bildpunkten) Text Komplizierte Objekte werden als hierarchische Strukturen der Primitive realisiert

18 Eigenschaften z. B. Sichtbarkeit Identifizierbarkeit Farbe Priorität (z.B. für Identifikation) Operationen z. B. Erzeugen / Löschen Namensgebung Transformation Kopieren, Einsetzen von Objekten Ändern der Eigenschaft

19 Datentypen graph. Geräte elementare Datentypen: zweidimensionales Feld von Rasterpunkten sequentielle Liste aus move and draw Befehls- folgen logische Schnittstellen: auf der Ebene graph. Primitive Abb. auf elementare Datentypen durch das Gerät

20 1.2 Hardware-Komponenten eines inter- aktiven Graphiksystems graphische Eingabegeräte Tastatur, Maus, Tablett (digitizer), Lichtgriffel, Joystick, Trackball, Datenhandschuh etc. graphische Ausgabegeräte Hardcopygeräte: Plotter, Printer, rapid prototyping Sichtgeräte: Kathodenstrahlröhre, Plasma-, Laser-, Flüssigkristallanzeige Display Processing Unit (Graphics Display System) Hardware oder Software bereitet die Bilddefinition des Anwendungspro- gramms zur Ausgabe auf dem Sichtgerät auf

21 Rapid Prototyping neue Techniken zur schnellen Erzeugung eines physischen Prototypen - Stereolithographie - LOM - Selective Laser Sintering

22 Kathodenstrahlröhre (CRT) Prinzip: beheizte Kathode emittiert Elektronen, die durch Anlegung einer hohen Spannung (20 KVolt) zur Anode bewegt werden. Elektronen treten durch Loch in der Anode in das Ablenkungssystem ein. Elektronenstrahl wird fokussiert und auf phosphor- beschichtete Bildschirmfläche gelenkt. Phosphor absorbiert Elektronen und emittiert Licht Flimmerfreies Bild bei Wiederholungsrate von ca 60 Hz

23 Maskenröhren (Shadow Mask Color CRT) 3 Elektronenstrahlsysteme und RGB Phosphor- punkte in unterschiedlicher Anordnung höhere Auflösung durch Delta-Anordnung der Punkte Inline Anordnung der Strahler vereinfacht Konver- genzschaltung Konvergenz: Einhaltung der richtigen Strahlerwinkel

24 vector-refresh display (60er Jahre) Vektorbildschirm (random scan) bezeichnet CRT, bei der der Elektronenstrahl längs einer beliebigen Strecke kontinuierlich über den Bildschirm gelenkt werden kann Architektur eines vektor-refresh Systems höhere Graphikbefehle werden in Punkt- und Linienkommandos umgewandelt, die im Wieder- holungsspeicher (refresh buffer) gespeichert und durch den display prozessor abgearbeitet werden Nachteil: hohe Kosten von Wiederholspeicher und schnellem display prozessor in den 60er Jahren

25 Speicherbildschirm (Direct View Storage Tube) Textronics (Ende der 60er Jahre) Prinzip: Schreibkathode bringt auf einem Spei- chergitter permanente elektrische Ladungen auf. Die von der Rieselkathode emittierten Elektronen passieren das Speichergitter nur an den beschriebe- nen Stellen. Vorteil: geringerer Preis durch Verzicht auf Wie- derholspeicher/prozessor verbleibende Nachteile: Forderung nach Farben, Schattierung und Bewegung bleibt unerfüllt

26 raster-refresh display sinkende Hardwarepreise und die Verwendung von TV-Technologie führt zur Entwicklung preiswerter Rasterbildschirme Ende '70er raster scan bezeichnet eine CRT bei der nur auf einem Raster liegende Bildschirmpunkte angesteuert werden können. pixel: Rasterelement, kleinster adressierbarer Bereich des Bildschirms scan line: horizontale Rasterlinie Scankonvertierung: Abbildung eines graphischen Primitivs auf das Raster bit map: Matrix der binären Pixelwerte (pixmap)

27 Prinzip eines raster-refresh Systems Graph. Primitive werden durch Scankonvertierung in Pixmap umgewandelt, die im Bildwiederhol- speicher (frame buffer) gespeichert und durch den Videocontroller auf den Bildschirm abgebildet wer- den. Vorteile: einfachere Technologie bei der Bildwieder- holung. Geschwindigkeit der Bildwiederholung un- abhängig von der Bildkomplexität Nachteile: Rastereffekte ( antialiasing) zeitaufwendiger Prozess der Scankonvertierung

28 Architekturen von Rasterdisplaysystemen (RDS) Einfaches RDS: Funktionen der DPU (z.B. Rasterisierung) in Soft- ware lange Bildaufbauzeiten Frame buffer ist Teil des Arbeitsspeichers. Bei fes- tem Adressbereich liest Videocontroller Bild ohne Belastung des Systembus gemeinsamer Adressraum für Anwendungs-, Displayprogramme und Bildspeicher hohe Flexibilität bei niedrigen Hardwarekosten

29 RDS mit integrierter DPU Beschleunigung graphischer Operationen durch Displayprozessor Vorteile des einheitlichen Adressraumes bleiben bestehen Probleme mit Konkurrenz der Komponenten um Speicherzugriff wird durch feste Zuordnung des Bildspeichers gelöst zunehmende Bedeutung

30 RDS mit peripherer DPU 3 Speicherbereiche: Hauptspeicher: Anwendungsdaten, -programm, graph. Software, BS Arbeitsspeicher der DPU: Daten und Programme (z.B. Rasterisierung) Bildspeicher gute Architektur zur Anpassung an spezielle Anwendung langsamer Datentransfer zwischen Hauptspeicher und Bildspeicher mittlerer Anforderungsbereich, keine Echtzeit

31 Aufgaben der DPU im Bilderzeugungsprozess

32 Video Controller (= Image Display System = IDS) liest Bildschirmspeicher und erzeugt stehendes Bild auf Monitor (60 Hz Wiederholrate) Raster scan generator erzeugt Ablenkungssignal zur Steuerung des Elektronenstrahls und kontrolliert die X- und Y-Adressregister, welche die Speicheradresse des darzustellenden Pixels bestimmen. Speicherinhalt definiert die Intensität des Elektronen- strahls und damit Grauwert oder Farbe des Pixels. Falls mehrere Pixel gleichzeitig ausgelesen werden, wird die Information in Schieberegister zwischengespeichert.

33 Zeilensprungverfahren (Interlacing): 2 Bilder werden mit halbierter Vertikalauflösung nacheinander geschrieben (1. Bild gerade Zeilen, 2. Bild ungerade Zeilen), halbierte Frequenz zufriedenstellend für Fernsehbilder (hohe Kohäranz benachbarter Zeilen), jedoch nicht für synthetische Bilder (Flimmern) Nutzbare Zeit für Bildaufbau wird durch Bild- und Zeilendauer sowie Zeiten für horizontalen und verti- kalen Strahlrücklauf bestimmt.

34 einfache Videocontroller arbeiten mit fester Zu- ordnung der Positionen im Bildspeicher und der Position auf dem Bildschirm Kompliziertere Videocontroller verwenden eine Bildtransformation, die beschreibt, wie der Inhalt des Bildspeichers auf dem Bildschirm abgebildet wird. In diesem Fall kann der VC Translationen, Rotationen, Skalierung von Teilbereichen des Bildspeichers erstellen.

35 Verwendung einer Farbtafel Pixelinformation wird als Adresse in eine Farbtafel (look-up table) interpretiert. Inhalt der Farbtafel be- schreibt Farbe durch Angabe der RGB-Anteile. Anzahl der verfügbaren Farben wird erhöht, wenn die Wortlänge in der Tafel größer ist als die Pixelwortlänge. Bei n-Bits/Pixel und m-Bits/Farbanteil in der Tabelle lassen sich 2 n Farben gleichzeitig darstellen aus einer Palette von 2 3m möglichen Farben. Bsp.: 24-Bit-Graphiksysteme: n = 8 Bit pro Grundfarbe Mio. Farben gleichzeitig darstellbar Speicheraufwand von ca. 4 MByte pro Bild mit Farbtafel (z.B. m = 8, n = 16) T Farben gleichzeitig aus Palette von 16 Mio.

36 weitere Anwendungen 1. Bitebenenextraktion Bei n Bits/Pixel können n Binärbilder oder RGB-Bilder durch geeignetes Laden der Farbtafel dargestellt werden. Binärbild: Farbtafel enthält Weiß bzw. Schwarz für 0 oder 1 an entsprechender Stelle 2. Bewegtbildeffekte Durch Änderung der Zuordnung von Pixelwert und Farbe lassen sich Bewegungen simulieren Bsp.: weiß schwarz

37 Bildspeicher Bindeglied zwischen Bilderzeugung (DPU) und Bilddarstellung (VC) DPU und VC konkurrieren um Zugriff VC liest entsprechend des Ablaufs der Strahl- ablenkung aus DPU schreibt wahlfrei ein Problem: Speicherzyklus i. A. größer als Bildpunktdauer Lösungen: Bildspeicher aus mehreren gleichzeitig adressier- baren Speicherbausteinen (erlaubt das gleichzeitige Auslesen mehrerer Pixel) Wechselspeicher (double buffer): 2 komplette Bildspeicher, die im Wechsel betrieben werden, d. h. A wird gelesen während B geschrieben wird, dann wird Funktion gewechselt spezielle Hardware Architektur für Bildspeicher (Video RAM)

38 1.3 Farbmodelle Graustufendarstellung achromatisches Licht = Licht ohne Farbinformation freigesetzte Lichtmenge (Intensität) ist nicht propor- tional zur wahrgenommenen Lichtstärke (Helligkeit) Bsp.:Übergang zwischen 25-W- zu 50-W-Glühbirne und 50-W- zu 100-W-Glühbirne wird gleich empfunden Definition von Graustufen n: Anzahl der gewünschten Graustufen E min > 0: kleinste realisierbare Intensität E max : max. darstellbare Intensität E 0 := E min E i := i E 0 (i = 1,..., n-1) E n-1 := E max = 1 Aus E n-1 := n-1 E 0 = Bsp.:

39 Graustufen am Rasterbildschirm Verwendung mehrerer Bit-planes Bildschirmspeicher (frame buffer) besteht aus Bit-planes Anzahl Bit-planes = Anzahl Bits pro Pixel Bsp.: 1 Byte pro Pixel 256 Intensitätsstufen

40 Dithering beruht auf der Eigenschaft des Auges, kleine Schwarzweißmuster zu Grauwerten zu ermitteln Fasse Pixelbereiche zu sog. Dithering-Zellen zusammen Definiere mögliche Zellenmuster durch Dithering- Matrix Bsp.: Fasst man 9 Pixel zu einer Zelle zusammen, so lassen sich 10 Graustufen kodieren

41 Ablauf des Ditherings Input: Bild in ursprünglicher Auflösung mit Grauwerten PROCEDURE Set Dither Cell (x, y, grey10: INTEGER); BEGIN IF (D [x MOD3] [y MOD3] < grey10) THEN setdot (x, y); END; Je größer der Wert von grey10 {0,..., 9}, desto mehr Punkte werden gesetzt Bsp.:Pixel x = 328, y = 123, grey10 = 9 x MOD3 = 1 y MOD3 = 0 D [1] [0] = 8 < grey10 Pixel wird gesetzt

42 Physikalische Grundlagen der Farben Farbe= sinnliche Wahrnehmung von Licht durch den Menschen Licht= für das menschl. Auge wahrnehmbare elektromagn. Strahlung (Wellen u. Partikeltheorie, Photonen) Frequenz f, Wellenlänge : f = c Violett: nm Gelb : nm Blau: nm Orange: nm Grün: nm Rot : nm physikalische Charakterisierung von Licht durch spektrale Energieverteilung P ( )

43 Entstehung von Farben wahrgenommene Farben entstehen aus verschie- denen physikal./chemischen Prozessen additive Farbmischung: Lichtstrahlen aus verschiedenen Lichtquellen werden additiv kombiniert resultierende Farbe enthält für bestimmte Wellen- längen so viele Photonen wie die Summe der einzelnen Farben (Anwendung: Farbfernseher)

44

45 subtraktive Farbmischung: Farbe resultiert aus Filterung. Filter hält Licht gewisser Wellenlängen zurück. Bsp.:Weiß - Rot = Cyan Weiß - Blau = Gelb Weiß - Grün = Magenta Weiß - Gelb - Magenta = Rot Weiß - Gelb - Cyan = Grün Weiß - Cyan - Magenta = Blau (Anwendung: Diaprojektor) Pigmentierung Teilchen mit Farbwirkung (Pigmente) in Flüssigkeit oder aufgebracht auf Oberfläche Pigmente absorbieren, reflektieren oder transmittieren Licht

46 Parameter der menschl. Farbempfindung Farbton (Hue) wird durch dominante Wellenlänge bestimmt Sättigung (Saturation, purity) hängt mit der Energieverteilung des Lichtes über das Spektrum zusammen (Anteil an weißem Licht) hochgesättigt: geringer Anteil an weißem Licht (reine Farbe) niedriggesättigt: hoher Anteil an weißem Licht (Pastellton) Helligkeit (brightness, luminance): wahrgenommene Intensität, proportional zu P ( ) Helligkeitseffizienz ( ) d

47 Physiologie der Farbwahrnehmung Netzhaut ist mit Rezeptoren ausgestattet 3 Arten von Farbrezeptoren mit unterschiedlichen Empfindlichkeiten Piks blauer Rezeptor (440 nm), grüner R. (545 nm gelb) roter R. (580 nm gelb) Helligkeitseffizienz Empfindlichkeit des Auges für Licht unterschiedlicher Wellenlänge und gleicher Intensität

48 Prozess der Farbwahrnehmung Gehirn erhält kombinierte Signale R + G, R - G, B - (R + G) Luminanz: Helligkeit R + G Chrominanz: Farbton und Sättigung Farbwahrnehmung Farb- und Sättigungsstufen bei mittlerer Intensität Trennschärfe: nm Einbeziehung von Intensitätsstufen ergibt ca. 350 T unterscheidbare Farbeindrücke

49 Universum physikalischer Farben = Menge aller Energieverteilungsfunktionen P ( ) über dem Spektrum I (Sichtbarkeit!) C 0 (I) unendlich dimensionaler VR ist kein VR, da P ( ) > 0 für I. Aber mit P 1, P 2 und [0, 1]: (1 - ) P 1 + P 2, d. h. ist konvex Für P und > 0: P d. h. ist ein Kegel

50 Universum der wahrnehmbaren Farben 1. Graßmannsches Gesetz (1853): Zwischen je vier sichtbaren Farben a, b, c, d besteht immer eine eindeutige lineare Beziehung (,,, ) R 4 : a + b + c + d = 0, d. h. die Menge W wahrnehmbarer Farben ist Teilmenge eines dreidimensionalen Vektorraumes V. Genauer gilt: W ist ein konvexer Kegel in V. Zwei spektrale Energieverteilungen, die dieselbe Farbempfindung erzeugen, heißen metamers.

51 Basisdarstellungen Wählt man als Basis von V die Grundfarben R, G, B und bestimmt durch Messung an Beobachtern die Anteile an R, G, B, die benötigt werden, um sämtl. Farben des sichtbaren Spektrums (konstante Hellig- keit, hohe Sättigung) zu erzeugen, so ergibt sich d. h. es gibt Farben F W mit F = r R + g G + b B mit r < 0 Diese Farben sind auf einem Bildschirm nicht darstellbar! Die Koeffizienten r, g, b als Funktionen der Wellen- länge werden auch als farberzeugende Funktionen be- zeichnet.

52 CIE-System der sichtbaren Farben 1931 Festlegung von drei künstlichen Grundfarben X, Y, Z durch Commission Int. de LEclairage mit F W ex. x, y, z > 0 : F = xX + yY + zZ Die farberzeugenden Funktionen x, y, z haben die Gestalt y = Helligkeitseffizienz ( ) x, y, z sind Linearkombinationen von r, g, b. Hieraus folgt, dass eine lineare Umrechnung zwischen dem RGB- und dem CIE-System existiert.

53 Ist P ( ) die spektrale Energieverteilung einer physikal. Farbe, so errechnet sich die CIE-Darstellung zu: x = k P( ) x d, y = k P( ) y d, z = k P( ) z d mit k = 680 lumens/watt für Kathodenstrahlröhre. CIE Farbdiagramm des sichtbaren Spektrums Der CIE-Kegel hat die Form Der Luminanz-Anteil einer Farbe wird durch x+y+z bestimmt Ein Chrominanz-Diagramm erhält man durch Schnitt des Kegels mit Ebene x + y + z = 1

54 Die Projektion dieser Ebene auf (X, Y)-Ebene ergibt das CIE-Chrominanz-Diagramm Der achromatische Punkt W definiert weißes Licht.

55 Anwendungen des CIE-Farbdiagramms Koordinaten des CIE-Diagramms ermöglichen die präzise Angabe von Farben und erlauben den Aus- tausch von Farbinformationen zwischen Systemen mit verschiedenen Grundfarben. Bestimmung der dominierenden Wellenlänge und Sättigung Sei F 1 eine Farbe aus dem Diagramm und F s der Schnittpunkt der Geraden durch F 1 und W mit der Randkurve des Diagramms (ohne Purpurlinie). Dann ist die Wellenlänge bei F s die dominierende Wellenlänge von F 1 das Verhältnis der Sättigungsgrad von F 1

56 Erzeugen von Farbpaletten F 1, F 2, F 3 seien sichtbare Farben des CIE-Diagrams Die Menge der Farben, die durch additives Mischen von F 1, F 2 erzeugt werden kann, entspricht der Strecke. Die Menge der Farben, die durch additives Mischen von F 1, F 2, F 3 erzeugt werden kann, entspricht dem Dreieck = (F 1, F 2, F 3 ). Komplementäre Farben mischen zu Weiß nichtspektrale Farben besitzen fehlende dominante Wellenlänge

57 Farbmodelle für Rastergraphik Ein Farbmodell ist ein dreidimensionales Modell zur Spezifikation von Farben innerhalb einer Farbpalette Farbmodelle orientieren sich entweder an den Eigen- schaften der Graphik Hardware (RGB, YIQ, CMY) oder an den Bedürfnissen des Benutzers (HSV, HLS, HVC) In jedem Fall beschreibt ein Farbmodell nur einen Teil der sichtbaren Farben

58 RGB-Modell hardwareorientiert (rote, grüne u. blaue Phosphor- punkte bei KSR) weit verbreitet additives Farbmodell: F = (r, g, b), r, g, b [0, 1] Mischung zweier Farben durch lineare Interpolation Grautöne: Mischung von Schwarz und Weiß

59 CMY-Modell subtraktives Farbmodell, basierend auf den Grund- farben Cyan, Magenta und Gelb Umrechnungsformel: Interpretation der Koeffizienten: Beschreibung der Absorption der R,G,B-Grundfarben durch Oberfläche Bsp.: blaue Oberfläche wird bestrahlt mit weiß, reflektiert aber blau = weiß - cyan - Magenta, d.h. absorbiert Cyan u. Magenta blau = Anwendung: permanente Ausgabe von Farbinforma- tion (z.B. Tintenstrahldrucker), Auge erhält nur die Anteile weißen Lichts, die reflektiert werden

60 YIQ-Modell Anwendung in amerikanischer NTSC-Fernsehnorm Y entspricht Y-Parameter im CIE-System, d.h. Y stellt die Helligkeit dar. Die Konvertierung der Farb- information in Monochrom-Darstellung erfolgt durch Auswertung von Y PAL: R - Y, Y, B - Y

61 HSV-Modell benutzerorientiert Spezifikation der Farbe über Farbton (hue), Sättigung (saturation) und Helligkeit (hier: value) Farbselektion: Wahl einer reinen Farbe (H =, V = S = 1) Mischung mit Weiß durch Reduktion von S Mischung mit Schwarz durch Reduktion von V

62 HLS-System intuitives Farbsystem der Fa. Tektronix Parameter: Farbton (Hue), Helligkeit (Lightness), Sättigung (Saturation) max. Sättigungsunterschiede bei mittlerer Intensität Reduzierung der Sättigungsunterschiede mit Abstand von mittlerer Intensität lineare Interpolation zwischen Farben ist nicht möglich in HSV oder HLS.

63 CNS-Modell erlaubt sprachbasierte Farbauswahl CNS = color naming system Helligkeitswerte: sehr dunkel, dunkel, mittel, hell, sehr hell Sättigungswerte:gräulich, gemäßigt, stark, lebendig Farbtöne:blau, violett, rot, orange, braun, gelb, grün Zwischentöne:z.B. rot, rötlich-orange, rot-orange, orangelich-rot, orange

64 2.3. Windowing und Clipping in 2D Weltkoordinaten: durch Daten der Anwendung bestimmt (z.B. mm) (ArbeitsKOS, ModellKOS) Gerätekoordinaten: durch physikalische Eigenschaften des Ausgabegerätes bestimmt (z.B. Pixel eines Bildschirms) window: rechteckiger Teilbereich des WeltKOS viewport: rechteckiger Teilbereich des GKsystems, auf dem der Inhalt des windows dargestellt werden soll window-viewport-Transformation mm wird zweistufig realisiert, um die graphische Ausgabe auf verschiedenen Ausgabegeräten zu unterstützen und um Da- ten versch. Welten auf einem Ausgabegerät darstellbar zu machen. Normalisierungstransformation: Abbildung eines windows auf einen Teilbereich des normalisierten Koordinatenraumes [0,1] x [0,1] Gerätetransformation: Abbildung eines Fensters im NKsystem auf das viewport

65 mm window-viewport transformation Gerätekoord. Gerätetransf. Normalisierungstransf. Weltkoord. G.transf. Norm.transf. normalisierte Koordinaten (0,0) t (0,1)(1,1) (1,0) Gerätekoord.

66 Clipping-Algorithmen Objekte, die ganz od. teilweise außerhalb des Fensters liegen, müssen abgeschnitten bzw. bei der graph. Darstel- lung ignoriert werden (Clipping). Clipping an window Grenzen erspart die Transformation von Objekten, die nicht dargestellt werden. Linien-Clipping (a) auf der Grundlage von Schnittpunktberechnungen beide Endpunkte einer Linie liegen innerhalb (d.h. X min X max, Y min Y max ): Linie liegt innerhalb beide Endpunkte außerhalb: keine Aussage one in / one out: Clipping notwendig Y min Y max X min X max Kritische Linien werden in Parameterdarstellung mit den Fensterberandungen geschnitten, um evtl. Schnittpunkte zu berechnen. Viele unnötige Schnittpunktberechnungen (insbes. Fall 3)

67 (b) Cohen-Sutherland-Algorithmus Bereichstests zur Vermeidung von Schnittpunktberechnungen Bereichscode: Bit Code: 1 = wahr 0 = falsch Bit 1: über dem Fenster y > y max Bit 2: unter dem Fenster y < y min Bit 3: rechts des Fensters x > x max Bit 4: links des Fensters x < x min Bereichstest mittels logischer Verknüpfungen (1) Code (P 1 ) AND Code (P 2 ) 0000 liegt außerhalb des Fensters (2) Code (P 1 ) AND Code (P 2 ) = 0000 keine Aussage (3) Code (P 1 ) OR Code (P 2 ) = 0000 liegt ganz innerhalb des Fensters d.h. es gibt eine Stelle in der beide Codes eine 1 haben v d.h. Code (P 1 ) = 0000 u. Code (P 2 ) = 0000

68 Polygonclipping Polygon meint in der Computergraphik i. Allg. die Fläche, die von einem geschl. Polygonzug eingeschlossen wird Anforderung: Ergebnis der Clipping Operation soll wieder ein Polygon liefern (ggf. mehrere Polygone). Wiederholtes Linienclipping ist prinzipiell möglich, führt aber zu Problemen

69 Sutherland-Hodgman Algorithmus (1974): Prinzip: clippe das gesamte Polygon an einer Fenster- kante nach der anderen

70 Anforderungen an Algorithmen 1. Qualität: optisch zufriedenstellende Darstellung - gute Approximation des graph. Primitivs - gleichmäßige Verteilung von Pixeln über Kurvenbogen 2. Effizienz: schnelle Erzeugung der Darstellung 2.4 Rasteralgorithmen Aufgabe der Rasteralgorithmen: Abbildung der graph. Primitive auf ein Pixelmuster

71 Rasteralgorithmen für Linien verwendetes Modell des Pixelmusters: Pixel sind nichtüberlappende Kreisscheiben um die Gitterpunkte eines ganzzahligen Gitters vereinfachende Annahmen: Startpunkt (x 0, y 0 ) u. Endpunkt (x 1, y 1 ) liegen exakt auf Pixel x 0 < y 0 Breite der Linie ist ein Pixel Steigung in der Linie erfüllt 0 m 1, d.h. pro Spalte der Pixelmatrix wird genau ein Pixel gesetzt


Herunterladen ppt "Vorlesung Computergraphik I WS 1999/2000 Prof. Dr. Guido Brunnett Fakultät für Informatik Graphische Datenverarbeitung und Visualisierung TU Chemnitz Oktober."

Ähnliche Präsentationen


Google-Anzeigen