Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Einschub zur Erinnerung:

Ähnliche Präsentationen


Präsentation zum Thema: "Einschub zur Erinnerung:"—  Präsentation transkript:

1 Einschub zur Erinnerung:
3ab. Einschub zur Erinnerung: Grundlagen Kernphysik und Kernenergie 3ab .1 Globale Eigenschaften der Kerne .2 Kernspaltung Reaktordynamik .4 Reaktortypen: Druckwasser-Reaktor und andere .5 Brennstoffkreislauf bzw. Abfall

2 3b.1 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung2 „Was ist Kernkraft“

3 Nukleon. U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung4: Radioaktiver Zerfall „

4 3b.2 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung2 „Was ist Kernkraft“

5 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung4: Radioaktiver Zerfall „

6 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

7 Spaltquerschnitt von 235U und von 238U
b..= barn Spaltquerschnitt der Atomkerne 235U und 238U gegenüber Neutronen in Abhängigkeit von der Neutronenenergie Quelle:Hänsel-Neumann: Physik-Bd 3: Atome-Atomkerne-Elementarteilchen, Spektrum Verlag 1995, ISBN= , Abb.12.20,p.451

8 Neutronenbilanz in einem Reaktor
Start:  Quelle:Halliday e.a.: „Physik“, Wiley ,Weinheim , ISBN , p. 1299, Abb.44-4

9 Neutronenbilanz in einem Reaktor:
Also: Neutronenbilanz in einem Reaktor: Start: Eine Generation aus 1000 Neutronen trifft auf den 235U-Brennstoff innerhalb der 238U-Matrix und den Moderator. Durch Kernspaltung entstehen 1370 Neutronen, 370 davon entweichen oder werden eingefangen, ohne dass es zu einer Spaltung kommt. Es verbleiben von dieser Generation wieder 1000 thermische Neutronen für die Folgegeneration. Die Abbildung gilt für einen mit konstanter Leistung arbeitenden Reaktor. Quelle:Halliday e.a.: „Physik“, Wiley ,Weinheim , ISBN , p. 1299, Abb.44-4

10 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

11 .3 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

12 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

13 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

14 .4 Kernreaktoren

15 Schematischer Aufbau eines Leichtwasserreaktors (LWR)
I Wärmeerzeugung I Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2.Auflage), ISBN= ,Bild 5.1,p.237

16 Dampfkraftwerk mit Druckwasser-Reaktor
„nur“ rund 600 K und 150 bar I- Wärmeerzeugung-I Quelle:Halliday e.a.: „Physik“, Wiley ,Weinheim , ISBN , p. 1300, Abb.44-5

17 Druckwasser-Reaktor Das Wasser im Primärkreislauf dient sowohl als
Moderator als auch als Kühlmittel Quelle:Paul A. Tipler.: „Physik“, Spektrum Akademischer Verlag, Heidelberg,2000, ISBN , p. 1409, Abb.40.13

18 Schematischer Aufbau eines Druckwasser-Reaktors (DWR) , etwas erweitert
Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2.Auflage), ISBN= ,Bild 5.2,p.239

19 DWR SWR Beim SWR wird im Core direkt Dampf für die Turbine erzeugt
U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

20 .42 Weitere Reaktortypen

21 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

22 HTR-Reaktor (Schema) : Kugelhaufen-Reaktor
.421 HTR-Reaktor (Schema) : Kugelhaufen-Reaktor Brennelement 60 mm - Kugel Brennstoffkern < 1mm Durchmesser He wird auf °C aufgeheizt! daher „Hochtemperatur“ Quelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2.Auflage), ISBN= , Abb. 9.9,p.259

23 Bemerkungen: Reaktor = „Silo“ , das eine Schüttung von tennisbalgroßen Kugeln mit Graphitmantel besitzt [im Reaktor Hamm-Uentrop waren es Kugeln ] Jede Kugel enthielt kleine Brennstoffkerne mit Durchmesser = ca. 0,2 mm aus hochangereichertem U-235 und Th-232 (als Brutstoff ) und besaß einen Graphitmantel Das Brennelement , also die 60 mm – Kugel , war so fest, dass sie Spaltprodukte endlagerfähig umschließen sollte. Die Beschickung erfolgte kontinuierlich Als Kühlmittel wird He von 250°C auf °C aufgeheizt! daher „Hochtemperatur –Reaktor“ Hoher elektrischer Wirkungsgrad! Inhärent sicherer Betrieb ist möglich, sofern die Auslegung –je nach Aufbau bau – auf MWel eschränkt bleibt. Quelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2.Auflage), ISBN= , p.259, und /Heinloth 2003, p. 244 ff./

24 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

25 Schneller Brutreaktor: Schnitt durch den Kern
.422 Schneller Brutreaktor: Schnitt durch den Kern Quelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2.Auflage), ISBN= , Abb. 9.10, p.261

26 Aus U-238 wird letztendlich Pu-239 erbrütet:
U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung4: Radioaktiver Zerfall „

27 Bemerkungen zum Schnellen Brüter:
Hohe Leistungsdichte (z.B. 375 MW/m3) erfordert spezielles Kühlmittel Flüssiges Na , mit Wärmeleitfähigkeit = 62 W/(m*K) bei 600 °C vgl. H2O: lambda = 0,6 W/(m*K) (bei 80°) Anteil der verzögerten Neutronen ist nur ½ so groß wie beim LWR Daher: kurze Reaktionszeiten für Steuerstäbe: sec (beim LWR: 2.5 sec) hoher apparativer und sicherheitstechnischer Aufwand Die urprünglich unterstellte Verknappung des Rohstoffes Uran wird nicht mehr so kritisch wahrgenommen. Daher weniger Beharrlichkeit. u.U. Proliferationsproblem durch Abzweigen von erbrütetem Pu Bilanz: Prototyp Kalkar wurde aufgegeben Superphénix 1995 nach Brand stillgelegt. („zu Forschungszwecken genutzt“) in Indien wurde Baustelle 2004 vom Tsunami überflutet UrQuelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2.Auflage), ISBN= , p.261ff, und /Heinloth 2003, p.

28 Übersicht verschiedener Raktortypen:
.423 Übersicht verschiedener Raktortypen: therm. Reaktor - Typ inhärent sicher „LeichtWasser“ ____________ Typ Tschernobyl Canada _____________ _ nur noch im UK Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2.Auflage), ISBN= ,Tabelle 5.2,p.238 , (redaktionell bearbeitet)

29 Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2
Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2.Auflage), ISBN= ,Tabelle 5.3,p.240

30 Brennstoff(kreis)lauf - Wiederaufarbeitung
.5 Brennstoff(kreis)lauf - Wiederaufarbeitung radioaktiver Abfall Endlagerung

31 .5 Für DWR, 1 GWel, und 1 Jahr: U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

32 Verfahren zur Anreicherung von U-235: Energie und Kostenaufwand
Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2.Auflage), ISBN= , p.235 ,

33 In der Entwicklung : Trenndüsenverfahren (Schema)
Aber noch zu hoher Energieaufwand Quelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2.Auflage), ISBN= , p.253.

34 Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2
Quelle:Klaus Heinloth: Die Energiefrage, Vieweg Verlag 2003 (2.Auflage), ISBN= , p.236 ,

35 radioaktiver Abfall Endlagerung
.5 radioaktiver Abfall Endlagerung

36 Quelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2
Quelle:Diekmann/ Heinloth: Energie, Teubner Studienbücher, 1997 (2.Auflage), ISBN= , p.231.

37 Quelle: MIT-ocw22.39_Golay_Vorlesung_10 CriticalSafetyFunctions, Adresse siehe linke Randleiste

38 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

39 Man beachte, dass beide Skalen logarithmisch sind.
Die vom radioaktivem Abfall, wie er im Verlauf eines Jahrs in einem typischen Kernkraftwerk anfällt, freigesetzte thermische Energie als Funktion der Zeit. Die Kurve ist die Summe der Beiträge einer großen Anzahl von Radionukliden mit einer ebenso großen Streuung der Halbwertszeiten. Man beachte, dass beide Skalen logarithmisch sind. Quelle:Halliday e.a.: „Physik“, Wiley ,Weinheim , ISBN , p. 1301, Abb.44-6

40 Ein tendenziöses Zwischenbild als Tagtraum.
Quelle: Der Spiegel, 2005, Heft 17, p.22

41

42 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung4: Radioaktiver Zerfall „

43 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

44 Reste U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

45 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

46 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

47 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

48 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

49 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

50 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „

51 U_Gießen_Düren_Vorlesung Kernphysik4_Vorlesung5: Kernenergie „


Herunterladen ppt "Einschub zur Erinnerung:"

Ähnliche Präsentationen


Google-Anzeigen