Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Elemente der Arithmetik, Algebra und des Sachrechnens –– WS 2010/2011.

Ähnliche Präsentationen


Präsentation zum Thema: "Elemente der Arithmetik, Algebra und des Sachrechnens –– WS 2010/2011."—  Präsentation transkript:

1 Elemente der Arithmetik, Algebra und des Sachrechnens –– WS 2010/2011

2 Studienplan Elemente der Arithmetik, Algebra und des Sachrechnens: jeweils im Wintersemester 3-stündig (ggf. 2-stündige Übung) ‏ –Di –Do –Do Abschlussklausur (50% der Examensnote) Elemente der Schulgeometrie: jeweils im Sommersemester 3-stündig (ggf. 2-stündige Übung) ‏ Abschlussklausur (50% der Examensnote) Achtung: Reihenfolge der Module ist beliebig!

3 ewf student

4

5 Einige Ziele der Veranstaltung Vertraut machen mit den Inhalten des Grundschul- Mathematikunterrichts (Arithmetik, Sachrechnen …) Eigenes Experimentieren mit Aufgaben –Muster (Phänomene) entdecken durch Explorieren –Operatives Prinzip –Phänomene begründen –Phänomene schülergemäß erklären Aufgaben produzieren –„Produktive Rechenübungen“ –Aufgabenformate –Aufgabenvariation Fachliche und didaktische Aspekte anwenden –Fachliche und didaktische Analysen –Materialverwendung/Veranschaulichungen –Unterrichtliche Umsetzungen –……. ……….

6 Aus dem Bayerischen Lehrplan - Fachprofil Mathematik Alle Schüler erhalten Gelegenheit, in Einzel-, Partner- oder Gruppenarbeit selbstständig Lösungsideen zu entwickeln und Lösungswege zielgerichtet zu suchen und zu erproben. Die unterschiedlichen Ansätze werden eingehend betrachtet, diskutiert und begründet. Fehler und nicht zum Erfolg führende Wege lassen sich dabei produktiv bei der Erarbeitung erfolgreicher Lösungsverfahren nutzen. Die Lehrkraft koordiniert die Schülerbeiträge und ergänzt sie gegebenenfalls durch gezielte Anregungen.

7 Aus dem Bayerischen Lehrplan - Fachprofil Mathematik (Forts.) Daneben kann eine gut durchdachte Lehrererklärung die Effektivität des Unterrichts sicherstellen. Abwechslungsreiche Übungsaufgaben dienen sowohl der Automatisierung und der Sicherheit als auch der vertieften Einsicht in Zusammenhänge und der Flexibilität. Dabei muss es für die Schüler zur Selbstverständlichkeit werden, die Ergebnisse selbst zu kontrollieren. Zunehmend erstellen die Schüler Lern- und Arbeitsmaterialien auch selbst.

8 Wie Kinder rechnen Sarah (5J.) sagt die Zahlwörter bis 95 auf und fährt fort: 96, 97, 98, 99, hundert, einhundert, zweihundert, dreihundert..... Aufgabe: Von 63 Kindern schickt jedes einen Luftballon weg. 37 bekommen Antwort. Wie viele bekommen keine Antwort? Patrick sagt: “Das habe ich ganz einfach gemacht. Ich habe erst 63 minus 20 gerechnet, das waren 43. Und dann habe ich erst plus 5 gerechnet, das waren 38. Noch plus 1 waren 37.”

9 Wie Kinder rechnen Eine Aufgabe in einer 4. Klasse: Ein Apotheker füllt 1,750 kg Salmiakpastillen in Tüten zu je 50g. Wie viele Tüten erhält er? 1,750 kg : 50 g 2 ⋅ 7 = 14 1 ⋅ 1 = 1 2 ⋅ 10 = Es sind die Bewertungspunkte für 12 Fußballspieler zu addieren: Die Punkte: 9, 12, 10, 11, 8, 10, 9, 8, 12, 11, 10, 12 Sven (2.Kl.) findet eine Methode. Er spricht: 119, 121, 121, 122, 120, 120, 119, 117, 119, 120, 120, 122

10 Muster erkennen

11 Aufgaben variieren

12 Aufgaben variieren

13 Zählen Grundinhalt: 1:1-Zuordnung Allgemein: Einem Element einer Menge wird genau ein Element einer zweiten Menge zugeordnet. Beispiel: Kokosnüsse – Hölzer (Zählen ohne Zahlen)‏ Speziell: Eine Menge wird durch die geordneten Zahlwörter gebildet Zählprinzipien Eindeutigkeitsprinzip Prinzip der Irrelevanz der Anordnung Abstraktionsprinzip Prinzip der stabilen Ordnung Kardinalzahlprinzip

14 Niveaustufen des Zählens 1. Stufe: Zahlwörter werden als Zeichenkette ("einszweidreivier...") gelernt. Hier besteht kein Eindeutigkeitsprinzip. 2. Stufe: Hier werden die Zahlwörter klar unterschieden und Gegenstände gezählt. Jedoch ist das Weiterzählen von einer Zahl aus noch nicht möglich. Lässt man z.B. 4 Gegenstände zählen und gibt 3 hinzu, so kann das Kind nicht von 4 aus weiterzählen, sondern muss wieder von 1 aus anfangen. 3. Stufe: Jetzt kann das Kind von einer Zahl aus weiterzählen (und auch rückwärts zählen). 4. Stufe: Parallel zum Weiterzählen wird auch die Anzahl der Zählschritte mitgezählt. Z.B. zählt das Kind bei der Frage "Um wie viel muss man weiter zählen, um von 6 auf 10 zu kommen?": 7,8,9,10 und gleichzeitig die Zählschritte 1,2,3,4. 5. Stufe: Geläufiges Vor- und Rückwärtszählen von verschiedenen Zahlen aus; Mitzählen der Zählschritte.

15 Zählen Vorkenntnisse von Schulanfängern (Untersuchung von Schmidt 1982, Stichprobenumfang: 1138 Schüler) Leistungen der Schüler im verbalen Zählen: –„Zähle, so weit du kannst.“ –Sobald die Schüler (Schulanfänger) einen Fehler machen - egal aus welchem Grund - wird abgebrochen. Es gilt die letzte, richtig genannte Zahl.

16 Erreichte ZahlProz. d. Kinder Kommentar mindestens 5 mindestens Praktisch alle Kinder können bis 10 zählen Es erfolgen hier kaum Abbrüche. mindestens 15 mindestens 20 mindestens 30 mindestens In diesem Abschnitt erfolgt jeweils ein steiler Abfall. Es gibt hier viele Abbrüche beim Zählen. mindestens 50 mindestens 60 mindestens 70 mindestens 80 mindestens 90 mindestens Wer beim Zählen bis hierhin gelangt, hat das Prinzip erfasst. Daher gibt es hier nur noch relativ wenige Abbrüche.

17 Vergleich der Zählfähigkeit 1909 / 1982

18 Techniken bei der Anzahlbestimmung Würfel Richtig Falsch Würfel Richtig Falsch Würfel Richtig Falsch GesamtWegnehmenBerührungAugen 5

19 Abzählen von Gegenständen mit dem Finger Zahlwortreihe Finger- bewegung Gegenstände Koordination

20 Abzählen von Gegenständen mit dem Finger Zahlwortreihe Finger- bewegung Gegenstände Koordination Fehler zumindest im Bereich bis 10 eher selten

21 Abzählen von Gegenständen mit dem Finger Zahlwortreihe Finger- bewegung Gegenstände Koordination Typische Fehler: Fingerbewegung: Gesprochen: Fingerbewegung: 56Sie-ben8 Gesprochen: Verletzung des 1:1-Prinzips

22 Abzählen von Gegenständen mit dem Finger Zahlwortreihe Finger- bewegung Gegenstände Koordination Typische Fehler: Auslassung: Doppeltzählung:

23 Abzählen von Gegenständen mit dem Finger Zahlwortreihe Finger- bewegung Gegenstände Koordination Typische Fehler: Auslassung: Doppeltzählung: Vor allem, wenn Gegenstände unstrukturiert, in Bewegung, nicht sortierbar, ununterscheidbar …

24 10 und 5 und 3makhuwa8_2_5irisch 10 und 4_4suaheli8 überlitauisch 2 bis 20yoruba (afr.)‏2 vor 20lateinisch 2 2 steigen herab zu 10 ainu (afr.)‏10 und 8lateinisch 1 2 von 10 im zweiten finnisch8 und 10griechisch 15_3mexikanisch10_8französisc h 2_9walisisch8_10deutsch 3_6bretonisch8_10engl. Probleme der Zahlwortbildungen: Beispiel 18 (acht-zehn)‏

25 Falsche Zahlwortbildungen Weiterzählen mit falscher Zehnerzahl: 38, 39, 20, 21, 22, … oder: neunundneunzig, hundert, einhundert, zweihundert, … Unkonventionelle Zahlwortbildungen: neunundzwanzig, zehnundzwanzig, elfundzwanzig … Weiterzählen nur noch mit Zehnern: … 19, 20, 30, 40, 50, … Verwechseln der Endsilben „-zehn“ und „-zig“: vierzehn, fünfzehn, sechzig, siebzig, …

26 Übungen zur Zählfähigkeit: Strukturen nutzen! Strukturieren! Material nutzen!

27 Wie viele Plättchen sind das?

28


Herunterladen ppt "Elemente der Arithmetik, Algebra und des Sachrechnens –– WS 2010/2011."

Ähnliche Präsentationen


Google-Anzeigen