Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

1 Disentangling from Babylonian Confusion – Unsupervised Language Identification Chris Biemann, Sven Teresniak University of Leipzig, Germany Cicling-05,

Ähnliche Präsentationen

Präsentation zum Thema: "1 Disentangling from Babylonian Confusion – Unsupervised Language Identification Chris Biemann, Sven Teresniak University of Leipzig, Germany Cicling-05,"—  Präsentation transkript:

1 1 Disentangling from Babylonian Confusion – Unsupervised Language Identification Chris Biemann, Sven Teresniak University of Leipzig, Germany Cicling-05, Mexico City February 18, 2005

2 2 Outline 1.Review: Supervized Language Identification 2.Co-occurrence graphs Co-occurrences Visualizing co-occurrences 3.Chinese Whispers Algorithm Finding words of the same language 4. Sorting text by language Evaluation and limitations

3 3 Review: Supervized Language Identification needs training Operates on letter n-grams or common words as features Works almost error-free for texts from 500 letters on Drawbacks: Does not work for previously unknown languages Danger of misclassifying instead of reporting „unknown“ Example: http://odur.let.rug.nl/~vannoord/TextCat/Demo “xx xxx x xxx …” classified as Nepali “öö ö öö ööö …” classified as Persian

4 4 Co-occurrence Statistics Co-occurrence: occurrence of two or more words within a well-defined unit of information (sentence, nearest neighbors, window...) Significant Co-occurrences reflect relations between words. Significance Measure (log-likelihood): In the following, sentence-based co-occurrence statistics are used.

5 5 Co-occurrence Graphs The entirety of all significant co-occurrences is a co-occurrence graph G(V,E) with V: Vertices = Words E: Edges (v1, v2, s) with v1, v2 words, s significance value. Co-occurrence graph is - weighted - undirected Small-world-property

6 6 Chinese Whispers - Motivation (small-world) graphs consist of regions with a high clustering coefficient and hubs that connect those regions The nodes in cluster regions should be assigned the same label per region Every node gets a label and whispers it to its neighbouring nodes. A node changes to a label if most of its neighbours whisper this label – or it invents a new one Under assumption of semantic closeness when being strongly connected there should emerge motivated clusters

7 7 Chinese Whispers Algorithm Assign different labels to every node in the graph; For iteration i from 1 to total_iterations { mutation_rate= 1/(i^2); For each word w in the graph { new_label of w = highest ranked label in neighbourhood of w; with probability mutation_rate: new_label of w = new class label; } labels = new_labels; } graph clustering algorithm linear time in the number of nodes random mutation can be omitted but showed better results for small graphs

8 8 Assigning New Labels Node A changes label from L1 to L3: Sum(L3)=9; Sum(L4)=8; Sum(L2)=5 Other strategies result in different kinds of partitioning - threshold for share - weighting by node degrees A L1->L3 D L2 E L3 B L4 C L3 5 8 6 3

9 9 Chinese Whispers on 7 Languages

10 10 Chinese Whispers on 7 languages

11 11 Assigning languages to sentences Use word-based language identification tool Largest clusters form word lists for different languages A sentence is assigned a cluster label if - it contains at least 2 words from the cluster and - not more words from another cluster Questions for Evaluation: up to what number of languages is that possible ? How much can the corpus be biased ?

12 12 Evaluation: Mix of 7 languages Languages used: Dutch, Estonian, English, French, German, Icelandic and Italian At least 100 sentences per language are necessary for consistent clusters

13 13 Common mistakes Unclassified: - mostly enumerations of sport teams - very short sentences, e.g. headlines - legal act ciphers in estonian case, e.g. 10.12.96 jõust.01.01.97 - RT I 1996, 89, 1590 Misclassified: mixed-language-sentences, like French: Frönsku orðin "cinéma vérité" þýða "kvikmyndasannleikur“ English: Die Beatles mit "All you need is love".

14 14 Evaluation: Bilingual biased Language pairs used: English-Estonian, French-Italian, Dutch-German 1st language varied between 100-10‘000 sentences, 2nd language 100‘000 sentences Factor up to 200 does not result in deterioration Above factor 200, the 1st language cluster is not distinguishable in size from 2nd-language ‚noise‘

15 15 Conclusion Unsupervized Language Identification is possible It fails to name the languages, but rather sorts them It works for previously undescribed languages, even for dialects Accurracy on sentences (here about 120 characters) is compareable to supervized approaches When classifying documents, there should be virtually no errors Time-linear graph-clustering algorithm

16 16 Questions? THANK YOU!

17 17 Small Cooccurring Worlds Angenommene Struktur von Kookkurrenzgraphen: skalenfreie Small Worlds kurze Weglänge zwischen den Knoten hoher Clustering Coeffizient Power-Law-Verteilung von Knotengraden Power-Law-Verteilung von Komponentengrößen Knotengrad: Anzahl (ausgehender) Kanten Komponente: Zusammenhängende Menge von Knoten Power-Law-Verteilungen lassen sich einfach aufzeichnen.

18 18 Strategien zur Farbübernahme Ein Knoten ändert seine Farbe auf eine neue Farbe aus der Umgebung, wenn diese (1) mit stärkster Signifikanzsumme auftritt. (top) (2) mit stärkster Signifikanzsumme gewichtet nach Knotengrad auftritt (a - linear, b - logarithmisch) (dist) (3) mit stärkster Signifikanzsumme auftritt und anteilig über einer gewissen Schwelle liegt (vote ) A L1 D L2 E L3 B L4 C L3 5 8 6 3 deg=1 deg=2 deg=3 deg=5 deg=4 Beispiel: Einf ä rben von A (1): Sum(L3)=9; Sum(L4)=8; Sum(L2)=5 (2a): wSum(L2)=5; wSum(L4)=4; wSum(L3)=2.2 (2b): wSum(L4)=7,28; wSum(L3)=5,51; wSum(L2)=3,46 (3): nSum(L3)=0,409; nSum(L4)=0,363; nSum(L2)=0,227

19 19 7 Clusters – 7 languages 68701:(3792): [...] a-t-elle, a-t-il, a-t-on, aanval, abandonné, abattu, abattus, aborder, abords, abouti, absolu, absolue, acceptent, accepter, accepté, accessibles, accession, accord, accords, accordé, accordée, accusation, accusations, accuse, accusé, accusée, acheter, achevé, achevée, acte, actes, actifs, action, actionnaires, actions, actions-suicides, activement, activiste, activistes, activités, actuelle, actuellement, adeptes, adjoint, admettre, administratif, admis, [...] 80266:(3616) [...] a, abandoned, able, ablösen, aboard, abortion, abortions, about, above, abroad, absence, absolute, absolutely, accepted, accessible, accident, accidents, acclaim, according, accounting, accused, accusing, acid, acidic, acknowledged, acquire, acquistare, acre, acres, across, act, acting, active, activist, activists, acts, actually, added, addicts, adding, additional, address, administration, administrator, admitted, adopt, adopted, adoption, adults, advance, 68952:(3312) [...] abbandonato, abbastanza, abbia, abbiamo, abbiano, abile, abitante, abitanti, abitazioni, abruzzesi, accade, accaduto, accenno, accertare, accertato, accesso, accoglienza, accolto, accordi, accordo, accorta, accorti, accusa, acquisito, ad, addetti, addirittura, addosso, adesso, adottata, aereo, affari, affermato, affetto, affidare, affidato, affiliati, affiliato, affonda, affrontare, affronteranno, agenti, agenzie, agevolare, aggiunge, aggiungere, aggiunto, agli [...] 75760:(3249) [...] af, afar, afgreiðslutíma, afl, afla, aflaheimilda, aflaheimildum, aflann, aflaverðmætið, afli, aflinn, aflýst, afnema, afnotagjalda, afnotagjaldið, afnotagjöld, afnotagjöldin, afnotagjöldum, afrek, afráðið, afstýra, aftur, afurðaverðs, afurðum, aka, al-Qaeda, al-Zawahri, ala, aldar, aldrei, aldri, aldur, allan, allar, allir, allra, allri, alls, allt, alltaf, alltof, allur, almannafjölmiðla, almannamiðla, almenna, almennt, altari, alveg, andvirði, annan, annar, annarra [...] 81089:(2894) [...] an, aandacht, aandachtsgebied, aangehouden, aangekeken, aangenomen, aangepakt, aangesloten, aangevuld, aangewezen, aangezien, aanleiding, aanmerking, aanpak, aanslag, aansluiting, aantal, aantrekkelijk, aanvankelijk, aanvragen, aanwezige, aanwezigheid, aanwijsbaar, aanwijzingen, aanzien, aarde, aardige, abortuspil, abortuswetgeving, acceptabel, achtduizend, achter, achtergrond, achterhalen, achterover, actie, actieve, actuele [..] 68872:(2791) [...] ab, abend, aber, abermals, abgebaut, abgelaufenen, abgeschlossen, abgeschlossenen, abschneiden, abzuwarten, acht, achtzehn, achtziger, afghanischen, akzeptieren, allein, allem, allen, allenfalls, aller, allerdings, allgemein, allgemeinen, alt, alte, alten, alter, am, amerikanische, amerikanischen, amerikanischer, anderen, anderer, anerkennen, angedroht, angegeben, angehende, angekündigt, angenommen, angesichts, angestellt, angetastet [...] 72602:(2247) [...] aadress, aadressi, aadressil, aadressina, aasta, aastaaruande, aastabilansi, aastabilanss, aastaks, aastal, aastas, aastat, aastate, aeg, aegumistähtaeg, aga, agressiooni, ainuaktsionäri, ainult, ainuõigus, ajaks, ajal, ajast, ajutiselt, akt, aktid, aktide, aktsia, aktsiad, aktsiaid, aktsiakapital, aktsiakapitali, aktsiakapitalist, aktsiaraamatusse, aktsiaselts, aktsiaseltsi, aktsiaseltsiga, aktsiaseltsil, aktsiaseltsile, aktsiat, aktsiate, aktsiatega [...] 60154:(195) [...] afferma, créée, dimostrano, dom, domicilio, dovranno, escl, esclusi, escluso, feriale, festivi, festivo, fóru, gleðilegs, gratuita, gravidanza, incarico, intero, inv, io, jr, jäetud, jõust, liðna, lõige, lõiked, nere, næstir, pagamento, punktides, sab, saper, scenario, servono, sindacale, sjálfsm, socc, soccorso, spiegato, spilurum, techniques, ventanni, warnte, zuständige [...] [...] 84023:(3) Inter, Mailand, Ronaldo

Herunterladen ppt "1 Disentangling from Babylonian Confusion – Unsupervised Language Identification Chris Biemann, Sven Teresniak University of Leipzig, Germany Cicling-05,"

Ähnliche Präsentationen