Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

2.1 Informationsfunktion www.uni-graz.at/iuc/EU www.wiwi.uni-frankfurt.de/Professoren/Ewert/EU  Wagenhofer/Ewert 2007. Alle Rechte vorbehalten.

Ähnliche Präsentationen


Präsentation zum Thema: "2.1 Informationsfunktion www.uni-graz.at/iuc/EU www.wiwi.uni-frankfurt.de/Professoren/Ewert/EU  Wagenhofer/Ewert 2007. Alle Rechte vorbehalten."—  Präsentation transkript:

1 2.1 Informationsfunktion  Wagenhofer/Ewert Alle Rechte vorbehalten.

2 2.2 Ziele n Modellierung und Analyse von Informationssystemen n Darstellung grundsätzlicher Einflussfaktoren für die Vorteilhaftigkeit von Informationssystemen im Individualkontext n Darstellung der Wirkungen von Informationssystemen im Mehrpersonenkontext n Aufzeigen von Problemen, optimale Informationssysteme im Rahmen des Mehrpersonen- und Kapitalmarktkontextes zu finden

3 2.3 Problemstellung n Externe Rechnungslegung Ist ein kapitalmarktorientiertes Informationsinstrument Enthält Angaben über die wirtschaftliche Lage Beeinflusst Erwartungen der Anleger Hat Konsequenzen für Kapitalkosten und Investitionstätigkeit n Wie aber soll die Rechnungslegung konkret gestaltet werden? Bilanzierungs- und Bewertungsmethoden, Umfang der geforderten Angaben und Informationen? n Was beeinflusst ganz grundsätzlich den Bedarf an und den Nutzen von Informationen?

4 2.4 Entscheidungstheoretische Grundlagen (1) n Nutzen von Informationen ergibt sich nicht durch deren „Konsum“ n Wert von Informationen resultiert indirekt durch Verbesserung der Entscheidungen PräferenzenEntscheidungsfeld Gewählte Alternative Zielerreichung (Nutzen) Informationen

5 2.5 Entscheidungstheoretische Grundlagen (2) n Entscheidungsfeld Aktionsraum A mit a  A Zustandsraum  mit    Verteilung F mit Wahrscheinlichkeiten f(  ) Ergebnisfunktion x(a,  ) n Präferenzen Nutzenfunktion U(x) des Entscheidungsträgers n Maximierung des Erwartungsnutzens

6 2.6 Entscheidungstheoretische Grundlagen (3) n Optimale Entscheidung Beispiel: Drei gleichwahrscheinliche Zustände, Nutzenfunktion U(x) =  x

7 2.7 Informationssysteme n Basisinformationen des Entscheiders sind in f(  ) n Beschaffung zusätzlicher Informationen beinhaltet den Erhalt eines Signals y  Y Neue signalbedingt optimale Entscheidung: Erhalt von y Neue Wahrscheinlichkeiten f(  y) Geänderte Erwartungsnutzen EU(a  y) Interpretation

8 2.8 Interpretation der Signale n Voraussetzung für eine Erwartungsänderung Systematische Beziehung zwischen den Zuständen  und den Signalen y Diese Beziehungen sind regelmäßig stochastisch n Die Beziehungen werden in sogenannten Likelihoods f(y  ) ausgedrückt n Sie geben an, mit welcher Wahrscheinlichkeit man das Signal y erhalten wird, wenn  der tatsächlich eintretende Zustand ist n In den Likelihoods spiegelt sich das Wissen um die Eigenschaften des Informationssystems wider

9 2.9 Vollkommene Information (1) Ausgangspunkt: Obiges Beispiel mit drei gleichwahrscheinlichen Zuständen Informationssystem hat folgende Signale Jeder Zustand ist also umkehrbar eindeutig mit einem bestimmten Signal verbunden! Eindeutiger Rückschluss vom Signal auf den Zustand möglich!

10 2.10 Vollkommene Information (2) Likelihoods Daraus erhält man zB für die Wahrscheinlichkeit f(y 1 ) Entsprechend folgt

11 2.11 Vollkommene Information (3) Die Erwartungsrevision zu den a posteriori-Wahrscheinlichkeiten f(  y) ergibt sich allgemein aus dem Bayes-Theorem Im Beispiel führt dies für y 1 auf Die anderen a posteriori-Wahrscheinlichkeiten sind analog

12 2.12 Partitionierung und Information Der Erhalt von Informationen kann als Partitionierung aufgefasst werden: Nach Empfang von y ist nur noch eine Teilmenge von  relevant! Im obigen Beispiel mit vollkommener Information gilt etwa

13 2.13 Unvollkommene Information (1) n Beziehung zwischen Signalen und Zuständen Jeder Zustand ist eindeutig mit einem bestimmten Signal verknüpft Es gibt aber mehrere Zustände, mit denen das gleiche Signal verbunden ist Daher keine umkehrbar eindeutige Beziehung n Verdeutlichung

14 2.14 Unvollkommene Information (2) Die Likelihoodstruktur für dieses System ist Daraus erhält man die Partitionierung Die revidierten Erwartungen gemäß Bayes-Theorem sind daher

15 2.15 Allgemeine Partitionsdarstellung (1) Informationssystem wird aufgefasst als Funktion von Zuständen in Signale Mit jedem Signal ist daher eine Teilmenge von Zuständen verbunden Die Likelihoods ergeben sich dabei generell wie folgt Dies ergibt die Partitionierung

16 2.16 Allgemeine Partitionsdarstellung (2) Man erhält daher das Signal y mit folgender Wahrscheinlichkeit Und die Erwartungsrevisionen ergeben sich allgemein wie folgt

17 2.17 Vorteil von (kostenlosen) Informationen – Überblick n Ohne Information Entscheider hat Aktionsraum A Er besitzt Erwartungen gemäß der Verteilung F Er wählt die optimale Aktion a* Zielerreichung EU(a*) n Mit Information Entscheider erhält Signal y Sein Aktionsraum ist A(y) Seine neuen Erwartungen sind F(y) mit f(  y) Er wählt die signalbedingt optimale Aktion a*(y) Signalbedingte Zielerreichung EU(a*(y)  y)

18 2.18 Signalbedingte Entscheidungen Nach dem Erhalt von y resultiert bei Wahl einer Aktion a der Nutzen Die signalbedingt optimale Entscheidung ergibt sich aus Beim Individualkontext wird typischerweise unterstellt Die Verwendung des Informationssystems lohnt sich genau dann, wenn gilt

19 2.19 Vorteil von Informationen im Individualkontext (1) Erwartungsnutzen EU(Y) bei beliebiger Strategie a(y) Gilt stets a(y) = a* (bei A(y) = A immer möglich), folgt Man kann sich also nie verschlechtern, weil der Status Quo ohne Information stets erreichbar ist!

20 2.20 Vorteil von Informationen im Individualkontext (2) Wählt man dagegen für wenigstens ein Signal y´ eine von a* abweichende Aktion a*(y´), so muss gelten Daraus folgt dann für die Differenz der Erwartungsnutzen

21 2.21 Beispiel Drei gleichwahrscheinliche Zustände, Nutzenfunktion U(x) =  x (a*=a 1 mit EU(a*)=4,807) Informationssystem sei Offenbar ist a*(y 1 ) = a 1. Beim Erhalt von y 2 ergibt sich a*(y 2 ) aus:

22 2.22 Informationsumfang Konzept n Fragestellung: Ist mehr (kostenlose) Information stets besser als weniger (kostenlose) Information? n Problem: Präzisierung des Informationsumfangs n Idee Angenommen, man hat zwei Informationssysteme Y und Y f Das System Y f beinhaltet mehr Information als Y, wenn  man für jedes Signal y f  Y f exakt angeben kann, welches Signal y  Y man erhalten hätte,  so dass man letztlich beim System Y f stets mindestens so viel weiß wie beim System Y, regelmäßig aber die Zustände noch genauer eingrenzen kann,  was impliziert, dass die mit Y f verbundene Partitionierung „feiner“ ist als diejenige von Y

23 2.23 Partitionierung und Feinheit (1) Folgende beiden Informationssysteme sollen verglichen werden: Y f beinhaltet weitere Partitionierung der Teilmenge  (y 1 ):

24 2.24 Partitionierung und Feinheit (2) n Allgemeine Definition der Feinheitsrelation Ein System Y f ist genau dann feiner als ein System Y, wenn es zu jedem Signal y f aus Y f ein Signal y des Systems Y gibt, so dass  (y f ) eine Teilmenge von  (y) ist: Folgende beiden Systeme lassen sich zB nicht danach ordnen: Aber:

25 2.25 Feinheitstheorem n Feinheitstheorem (Blackwell-Theorem) Seien zwei (kostenlose) Informationssysteme Y f und Y gegeben, wobei Y f feiner als Y ist. Dann ist im Rahmen einer Individualanalyse die Zielerreichung bei Y f mindestens so groß wie diejenige bei Y, dh: EU*(Y f )  EU*(Y). n Beweis Analog zur Vorteilhaftigkeit eines (einzelnen) kostenlosen Informationssystems Es ist wegen A(y) = A und A(y f ) = A beim System Y f stets der Status Quo des Systems Y erreichbar Wird also eine Teilmenge  (y) durch mehrere y f weiter partitioniert, so kann man für jedes dieser y f stets a*(y) wählen und erzielt die gleiche Zielerreichung wie bei y. Weicht man für wenigstens ein y f davon ab, dann nur deswegen, weil man dort einen höheren Nutzen erzielt

26 2.26 Aspekte des Feinheitstheorems n Eigenschaften Feinheitstheorem gilt für Individualkontext (A(y) = A) Informationskosten werden nicht betrachtet Ansonsten gilt es problemunabhängig, dh  für beliebige Nutzenfunktionen  für beliebige Wahrscheinlichkeitsverteilungen  für beliebige Aktionsräume und Ergebnisfunktionen n Feinheitstheorem knüpft rein an Eigenschaften von Informationssystemen an n Allerdings können nicht alle Informationssysteme gemäß der Feinheitsrelation geordnet werden

27 2.27 Informationskosten (1) n Einsatz eines Informationssystems typischerweise nicht kostenlos n Allgemein können die Informationskosten k vom System Y, der gewählten Aktion a und dem Zustand  abhängen, dh k = k(Y,a,  ) n Der signalbedingte Erwartungsnutzen bei Wahl einer Aktion a ist dann:

28 2.28 Informationskosten (2) Zielerreichung beim Einsatz des Systems Y beträgt Der Einsatz von Y lohnt sich genau dann, wenn gilt Bei Risikoneutralität und aktionsunabhängigen Kosten folgt Informationskosten beeinflussen die Aktionswahl nicht!

29 2.29 Informationskosten (3) Zielerreichung des Entscheiders Einsatz von Y genau dann vorteilhaft, wenn „Informationsinduzierte Bruttoverbesserung des Erwartungsnutzens muss die erwarteten Informationskosten übersteigen“ (Diese Formulierung gilt unter allgemeineren Bedingungen aber nicht mehr.)

30 2.30 Mehrpersonenkontext n Die externe Rechnungslegung wendet sich an eine Vielzahl von Personen n Ihnen gehen die Informationen gemeinsam zu n Die Entscheidung über „gute“ Varianten der Rechnungslegung muss dies berücksichtigen n Relevante Aspekte sind insbesondere Probleme eines Standardsetters bei der Auswahl von Informationssystemen Wert von Informationssystemen bei Handlungsverbundenheit im Kapitalmarktkontext Potenzielle Unterschiede zwischen den Kriterien „Entscheidungsnützlichkeit“ und „Anreiznützlichkeit“

31 2.31 Probleme eines Standardsetters n Wie kann ein Standardsetter unter dem Aspekt der Entscheidungsnützlichkeit das „allgemein optimale“ Informationssystem finden? n Antwort: Allgemein gar nicht! n Begründung Die Parameter der individuellen Entscheidungsprobleme (Nutzenfunktionen, Erwartungen, Aktionsräume...) können sehr unterschiedlich sein Selbst bei Vernachlässigung der Kosten ist Feinheitskriterium nicht anwendbar, weil sich nicht alle Informationssysteme danach ordnen lassen Eine Entscheidung über derart nicht vergleichbare Systeme hängt aber vom spezifischen Entscheidungskontext ab

32 2.32 Beispiel Zwei Investoren mit jeweils U(x) =  x und folgenden Entscheidungsproblemen: (die Zustände sind gleich wahrscheinlich) Investor 1Investor 2 Zwei (gemäß Feinheit nicht vergleichbare) Informationssysteme stehen zur Wahl: Investor 1: - würde gerne genau wissen, ob  2 vorliegt, - weil er dann stets die Aktion wählen kann, die zum höchsten zustandsbedingten Ergebnis führt, - so dass er System Y 1 präferiert, - während Y 2 für ihn völlig wertlos ist Investor 2: - würde gerne genau wissen, ob  1 vorliegt, - weil er dann stets die Aktion wählen kann, die zum höchsten zustandsbedingten Ergebnis führt, - so dass er System Y 2 präferiert, - während Y 1 für ihn völlig wertlos ist

33 2.33 Folgerungen n Ohne Informationskosten Standardsetter müsste sich für einen Investor entscheiden Der jeweils andere wird aber nicht schlechter gestellt (für jeden Investor gilt immer noch A(y) = A) Ausweg: Sind die Systeme kostenlos, könnte man einfach beide zur Verfügung stellen (muss feiner sein als jedes einzelne System und daher für jeden Investor besser) n Mit Informationskosten Beurteilung kann generell nicht unabhängig vom konkreten Entscheidungsproblem vorgenommen werden Obige Lösung ist schon a priori nicht mehr plausibel Standardsetter kennt zudem die Parameter der individuellen Probleme nicht, müsste sich aber selbst bei deren Kenntnis für bestimmte Investoren entscheiden Dies kann andere Investoren streng benachteiligen  Verteilungseffekte

34 2.34 Handlungsverbundenheit an Kapitalmärkten n Problem Die Informationen ändern Erwartungen und Entscheidungen Daraus ergeben sich veränderte Marktpreise Diese sind ihrerseits Determinanten der Aktionsräume Man kann nicht mehr von A(y) = A ausgehen Entscheidungen der Anleger Präferenzen Erwartungen Aktionsräume Marktpreise Informationen

35 2.35 Portefeuillemodell - Annahmen Einperiodiger Markt Ein risikobehaftetes Wertpapier mit Preis P Überschuss (Endwert) am Periodenende x = µ +  Störgröße  normalverteilt mit Erwartungswert 0 und Varianz σ 2 Erwartungswert der Überschüsse daher E(x) = µ I Investoren, homogene Erwartungen, a i = Anteile von Investor i am risikobehafteten Wertpapier b i = Betrag, den Investor i sicher zum Zinssatz 0 investiert Nutzenfunktion negativ exponentiell: U i (W i ) = -exp(-r i ·W i ) W i = unsicheres Endvermögen = a i ·x + b i Endvermögen W i normalverteilt, daher Orientierung am Sicherheitsäquivalent SÄ möglich

36 2.36 Lösung ohne Information (1) Budgetrestriktion eines Investors bindet im Optimum Für den Endwert erhält man Sicherheitsäquivalent Optimaler Wertpapierbestand

37 2.37 Lösung ohne Information (2) Im Gleichgewicht muss der Markt geräumt sein Einsetzen der optimalen Politiken erbringt Dies lässt sich nach dem Preis P auflösen

38 2.38 Lösung ohne Information (3) Einsetzen von P in die Lösung für die Politiken führt auf Sicherheitsäquivalent im Gleichgewicht

39 2.39 Bereitstellung perfekter Information Die Anleger erhalten vor dem Handel folgende Signale y:

40 2.40 Lösung mit Information (1) Nach Erhalt von y ist kein Risiko mehr vorhanden, daher folgt für SÄ Signalbedingt optimaler Wertpapierbestand - Marktpreis ist perfekt mit der Information y korreliert - Keine Risiken mehr nach Erhalt von y - Daher eigentlich kein Grund mehr zum Handeln am Markt aus Gesichtspunkten der Risikoteilung - Verbleibender Handelsgrund: Unterschiedliche Anfangsausstattungen - Dieses Motiv wird wegen der obigen Preiseigenschaft ausgehebelt - Beim gleichgewichtigen Preis ist ein Handel für jeden Investor faktisch egal

41 2.41 Lösung mit Information (2) Nach Erhalt von y hat jeder Anleger daher ein sicheres Endvermögen, das faktisch alleine von seiner Anfangsausstattung abhängt: - Vor dem Erhalt von y besteht aber (Informations-) Risiko - Ex ante ist das Endvermögen weiterhin normalverteilt Sicherheitsäquivalent dieses risikobehafteten Vermögens

42 2.42 Lösung mit Information (3) Vorteil aus dem Einsatz des Informationssystems - Kein Anleger kann sich wirklich verbessern - Jeder, der ohne Information handeln würde, erfährt eine echte informationsinduzierte Nutzeneinbuße „Informationsablehnungstheorem“

43 2.43 Diskussion n Auf den ersten Blick günstige Informationslage Information y kommt vor dem Handel an den Markt Man kann daher darauf reagieren Die Information ist vollkommen und eliminiert jegliches Risiko Außerdem ist sie kostenlos verfügbar n Wäre im Individualkontext hinreichend für maximalen Informationswert n Im Marktkontext diametral umgekehrt Risikovernichtung gilt ja nur ex post, nicht aber ex ante Das ex ante verbleibende Informationsrisiko ist jetzt wegen der ex post-Preise P(y) nicht mehr am Markt handelbar Es entspricht aber faktisch dem ursprünglichen Risiko σ 2, welches ohne Information durch Handel geteilt worden wäre Daher kann die Information niemandem nützen

44 2.44 Relativierungen n Zeitliche Struktur des Problems Modell enthielt keine Möglichkeit zum Handel vor Information Erfassung über sogenanntes „sequenzielles“ Marktregime Dort gilt Informationsablehnung für ein System Y nicht mehr Ggf aber noch möglich beim Vergleich mehrerer Systeme n Einbeziehung von Investition und Produktion eröffnet neue Vorteile für Informationen n Private Beschaffung eines Systems Y Einzelner Anleger handelt bei gegebenen Preisen gemäß individuellem Kosten-Nutzen-Tradeoff Kann dazu führen, dass jeder privat das System Y beschafft Gesamtwirkungen wie bei Informationsablehnung, kann aber nicht wirksam unterdrückt werden Öffentliche Bereitstellung kann dann effizienter sein

45 2.45 Folgerungen für Standardsetter n Präzisierung der Funktion der Rechnungslegung n Beachtung des Mehrpersonenkontextes Distributionseffekte verhindern Standards, die einmütig als optimal gelten können (ggf sogar Informationsablehnung) Abschätzen der Verteilungswirkungen erfordert Kenntnisse der individuellen Entscheidungsprobleme Diese sind realiter kaum zu erheben  Man agiert faktisch „im Nebel“  Umgekehrt kann mit geeigneter Argumentation fast alles begründet werden n Ausweg: Typisierung der Anlegerprobleme Problem: In welche konkrete Richtung? n Ergänzung durch empirische Forschung zur Abschätzung der Kapitalmarktkonsequenzen


Herunterladen ppt "2.1 Informationsfunktion www.uni-graz.at/iuc/EU www.wiwi.uni-frankfurt.de/Professoren/Ewert/EU  Wagenhofer/Ewert 2007. Alle Rechte vorbehalten."

Ähnliche Präsentationen


Google-Anzeigen