Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Manfred Thaller, Universität zu Köln Köln 11. Dezemberr 2014

Ähnliche Präsentationen


Präsentation zum Thema: "Manfred Thaller, Universität zu Köln Köln 11. Dezemberr 2014"—  Präsentation transkript:

1 Manfred Thaller, Universität zu Köln Köln 11. Dezemberr 2014
Einführung in die Informationsverarbeitung Teil Thaller Stunde VI: Wege und warum man sie geht Graphen. Manfred Thaller, Universität zu Köln Köln 11. Dezemberr 2014

2 I. Einführung Anknüpfungspunkte aus früheren Stunden.

3 Das Problem

4 A* Algorithmus: Schluß

5 A* formell A = Stapel verwendbarer Felder; B Stapel geprüfter Felder
(1) Füge den Startknoten in A ein (2) Wiederhole: (2.1) Wähle den Knoten n mit den niedrigsten Kosten F (n) aus A aus und verschiebe ihn in B (2.2) Für jeden an n direkt angrenzenden Knoten m: (2.2.1)Wenn m nicht betretbar (Hindernis, Wasser, etc.) oder bereits in B ist, ignoriere ihn (2.2.2) Füge m in A ein, wenn er noch nicht enthalten ist (2.2.3) Trage die Kosten F (m) und G(m) ein und vermerke als Vorgänger n bzw. aktualisiere sie wenn m schon enthalten war und ein Weg über n mit kleinerem G(m) gefunden wurde (3) Wenn der Zielknoten in A eingefügt wurde, ist ein Weg gefunden worden. Wenn A leer geworden ist, ohne den Zielknoten zu finden, existiert kein Weg

6 URL Server Wichtig: Art der Suche im WWW (Tiefen v. Breitensuche).
Crawler URL Server Startet mit Anfangs URL. Liest weitere URLs aus einem Dokumenten-Index. Schickt URLs an Crawler um Seiten zu holen. Wichtig: Art der Suche im WWW (Tiefen v. Breitensuche). Doc Index

7 Ausgangspunkt I Möglichkeit möglichst vieler derartiger Probleme auf eine einzige Klasse von Vorgehensweisen zurück zu führen.

8 Ausgangspunkt II:

9 Königsberger Brückenproblem
Frage: Möglichkeit, alle 7 Brücken hintereinander so zu überqueren, dass jede genau einmal – also nicht mehrmals – überquert wird. Leonhard Euler (1707 bis 1783).

10 Abstraktion I

11 Abstraktion II

12 Abstraktion III A B D C

13 Abstraktion IV

14 „Ein Graph“ Knoten (Vertex, Nodes) Kanten (Edges)

15 Definition des Problems
Ein Graph G heißt Eulerscher Graph, falls es einen geschlossenen einfachen Kantenzug gibt, der jede Kante von G enthält. Ein solcher Kantenzug heißt dann Eulerscher Kantenzug.

16 „Lösung“ des Problems Sei G ein zusammenhängender Graph. Genau dann ist G ein Eulerscher Graph, wenn jeder Knoten von G geraden Grad hat.

17 Ziele der Graphentheorie in der Informatik
(1) Erlaube Aussagen über auf Graphen zurückführbare inhaltliche Probleme.

18 Ziele der Graphentheorie in der Informatik
Kopf: (2) Beschreibe direkt die Eigenschaften von Listen, die wir am Tag 2 als eine der grundlegenden Datenstrukturen kennengelernt haben. Schwanz: Atom 1 Atom 2 Atom 3

19 Definitionen I Einfacher, ungerichteter Graph.
Auch „schlichter Graph“.

20 Definitionen … Ist G ein Graph, so sagt man allgemein v ist Knoten (bzw. Ecke) von G, wenn v zu V(G) gehört. Ferner sagt man, falls G ungerichteter Graph ohne Mehrfachkanten ist und e zu E(G) gehört, e ist eine ungerichtete Kante von G, gerichteter Graph ohne Mehrfachkanten ist und e zu E(G) gehört, e ist eine gerichtete Kante von G, ungerichteter Graph mit Mehrfachkanten ist und E(G)(e) > 0, e ist eine ungerichtete Kante von G, gerichteter Graph mit Mehrfachkanten ist und E(G)(e) > 0, e ist eine gerichtete Kante von G.

21 Definitionen II Einfacher, gerichteter Graph.
Kanten hier: „gerichtete Kanten“, Bögen oder Dikanten.

22 Definitionen III Ungerichteter Graph mit Mehrfachkanten, auch „Multigraph“.

23 Definitionen IV Knotengefärbter Graph.

24 Definitionen V Kantengefärbter Graph.

25 Definitionen VI Ein verbundener oder zusammenhängender - Graph.

26 Definitionen VII Ein unverbundener - oder unzusammenhängender- Graph.

27 Definitionen VIII Ein Graph mit einer Schleife

28 Definitionen IX Ein Graph mit einem Zyklus.

29 Definitionen IX Ein Graph mit einem Zyklus.

30 Beziehung: Graphen und Matrizen
K2 K1 K4 K3

31 Beziehung: Graphen und Matrizen
K2 K1 K4 K3

32 Konzept Isomorphie I

33 Konzept Isomorphie II

34 Konzept Isomorphie III

35 Konzept Isomorphie IV Zwei Graphen G1 und G2 sind isomorph, wenn es eine umkehrbar eindeutige Beziehung zwischen den Ecken von G2 gibt derart, dass die Anzahl der Verbindungskanten zweier Ecken von G1 gleich der Anzahl von Verbindungskanten der entsprechenden Ecken von G2 ist.

36 Anwendung Isomorphie Nachteil: Überschneidungen, Diagramm daher potentiell verwirrend.

37 Anwendung Isomorphie Vorteil: Keine Überschneidungen, Diagramm daher klarer.

38 Weitere Begriffe Grade:
Anzahl der Kanten von und zu einem Knoten / allen Knoten. Eingangsgrade und Ausgangsgrade. Maximale / Minimale Eingangsgrade / Ausgangsgrade.

39 Weitere Begriffe Verbundenheit:
Ein Graph ist n-verbunden, wenn n Kanten entfernt werden können, ohne dass er unzusammenhängend wird.

40 Beispiel

41 Verbindungen

42 Verbindungen

43 Verbindungen

44 Verbindungen

45 Verbindungen

46 Verbindungen

47 Travelling salesman Besuche jede Stadt, aber keine zweimal – auf möglichst kurzem Weg.

48 Travelling salesman “Brute force” Anzahl der Permutationen: (7-1)!/2 = 360

49 Travelling salesman “Branch and Bound” Anzahl der Permutationen < “Brute Force”

50 “Nearest Neighbour” Ergebnis abhängig vom Startknoten
Travelling salesman “Nearest Neighbour” Ergebnis abhängig vom Startknoten

51 Weitere Begriffe Durchmesser:
Ein Graph hat den Durchmesser n, wenn der längste nicht-zyklische Kantenzug zwischen zwei Knoten n Knoten durchläuft.

52 Weitere Begriffe Ein ungerichteter, zusammenhängender Graph
ohne Zyklen heisst Baum. D.h., die schwarzen Pfeile im nebenstehenden Diagramm definieren Zeiger nach unserer früheren Definition. Die roten Linien repräsentieren die Kanten im repräsentierten Graphen.

53 Anwendungen … Semantisches Netz

54 Anwendungen … P2P Netzwerk

55 Anwendungen …

56 Anwendungen …

57 Anwendungen …

58 Literatur Im empfohlenen Lehrbuch (Gumm / Sommer, Einführung in die Informatik, Oldenbourg, 82008) Kapitel 4. Dazu gehörige Programme (Kapitel 4) zum Download.

59 Vielen Dank!


Herunterladen ppt "Manfred Thaller, Universität zu Köln Köln 11. Dezemberr 2014"

Ähnliche Präsentationen


Google-Anzeigen