Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Einführung in die Meteorologie - Teil II: Meteorologische Elemente - Clemens Simmer Meteorologisches Institut Rheinische Friedrich-Wilhelms Universität.

Ähnliche Präsentationen


Präsentation zum Thema: "Einführung in die Meteorologie - Teil II: Meteorologische Elemente - Clemens Simmer Meteorologisches Institut Rheinische Friedrich-Wilhelms Universität."—  Präsentation transkript:

1 Einführung in die Meteorologie - Teil II: Meteorologische Elemente - Clemens Simmer Meteorologisches Institut Rheinische Friedrich-Wilhelms Universität Bonn Sommersemester 2006 Wintersemester 2006/2007

2 II Meteorologische Elemente II.1 Luftdruck und Luftdichte II.2 Windgeschwindigkeit II.3 Temperatur II.4 Feuchte II.5 Strahlung

3 II.5.1 Meteorologisch wirksame Strahlung II.5.2 Strahlungsgesetze II.5.3 Solare und terrestrische Strahlung II.5.4 Phänomenologie der Strahlungsflüsse II.5.5 Optische Erscheinungen in der Atmosphäre

4 II.5.1 Meteorologisch wirksame Strahlung Strahlung tauchte bislang auf im diabatischen Term beim 1. Hauptsatz in der Oberflächenenergiebilanzgleichung beim Strahlungsfehler beim Thermometer in der Fernerkundung Strahlung besteht aus elektromagnetischen Wellen. Eine elektromagnetische Welle hat die Energie E=hν mit ν der Frequenz der Welle und h=6.6263x Js dem Planckschen Wirkungsquantum. Strahlung enthält also Energie (siehe 1. Hauptsatz). E.m. Wellen entstehen (werden emittiert), wenn Moleküle auf einen niedrigeren Energiezustand (beschrieben u.a. durch Elektronen- konfiguration, Schwingungs- und Rotationszustand) übergehen. Werden elektromagnetische Wellen von einem Molekül absorbiert (vernichtet),dann gelangt das Molekül entsprechend auf einen höheren Energiezustand.

5 Spektrale Eigenschaften Frequenz ν und Wellenlänge λ der elektromagnetischen Welle sind verbunden durch λ=c/ν mit c der Wellenausbreitungsgeschwindigkeit (Lichtgeschwindigkeit, konstant im Vakuum, 2,99793x10 8 m/s). Je höher die Frequenz desto kürzer die Wellenlänge desto höher die Energie der elektromagnetischen Welle (E=hν ). Strahlung ist also spektral, d.h. sie hängt von der Wellenlänge λ (oder Frequenz ν) der in der Strahlung versammelten elektromagnetischen Wellen ab. Auch turbulente Flüsse (z.B. fühlbare Wärme) haben spektrale Eigenschaften, da die Turbulenzelemente unterschiedliche Größen λ haben HλHλ λ/m λ/m HλHλ m Höhe 10 m Höhe Gesamtfluss H ergibt sich durch spektrale Integration von Hλ über den gesamten Größenbereich der Wirbel

6 Vergleich spektrale Eigenschaften turbulenter Flüsse und Strahlungsflüsse Turbulente FlüsseStrahlungsflüsse Spektral kontinuierlich Spektrale Elemente (Wirbel) wechselwirken miteinander (Kombination, Zerfall) Entstehung durch Scherungsinstabilität oder Thermik Energietransport ist an Masse gebunden Spektral diskontinuierlich Keine Wechselwirkungen zwischen den Wellen unterschiedlicher Wellenlänge Entstehung durch Emission (Änderung der Energiezustände von Molekülen) Energietransport ist nicht an Masse gebunden

7 Elektromagnetisches Spektrum

8 Strahlungsquellen Solare Strahlung (0,2 - 5 μm) Sonnenatmosphäre, T ca K 1350 W/m 2 am Erdatmosphärenoberrand, senkrecht zur Einstrahlungsrichtung Terrestrische Strahlung ( μm) –Erdoberfläche, T ca. 300 K, kontinuierliches Spektrum –Atmosphärische Gase, T ca. 200 – 300 K, spektral sehr differenziert durch Rotationsübergänge Vibrationsübergänge Elektronenübergänge –Niederschlag, Wolken, Aerosole, T ca. 200 – 300 K, kontinuierliches Spektrum

9 Absorption von Strahlung in der Atmosphäre

10 Übungen zu II.5.1 In welchen der meteorologischen Grundgleichungen taucht die Strahlung als Energiequelle/senke auf? Welche Intervalle in Wellenlänge, Frequenz und Wellenzahl (2π/λ) umfassen solare und terrestrische Strahlung?

11 Strahlungshaushalt des Systems Erde-Atmosphäre. Energiebilanzen in % der solaren Einstrahlung

12 II.5.2 Strahlungsgesetze Nomenklatur Plancksches Strahlungsgesetz Wiensches Verschiebungsgesetz Stefan-Boltzmann Gesetz Kirchhoffsches Gesetz

13 II Nomenklatur Strahlungsflussdichte F, [F] = W/m² gesamter Strahlungsenergiefluss durch eine Einheitsfläche Strahldichte I, [I] = W/(m²sr), sr = Steradian, Raumwinkeleinheit (gesamter Winkelbereich=4π, anlog zu 2π (Radian)=180 o beim Kreis) Zusammenhang zwischen Strahlungsflussdichte und Strahldichte durch Integration über den Halbraum I ist der Energiefluss durch eine Einheitsfläche (EF) aus einer Raumwinkeleinheit, wobei aber die Einheitsfläche senkrecht auf dem Blickstrahl steht (daher cosθ in Integration für F. dΩdΩ θ EF I

14 Raumwinkelintegration x y z θ φ dU θ dU φ Raumwinkel werden in Steradian (sr) angegeben, so wie normale Winkel in Radian (rad) angegeben werden.

15 Isotrope Strahlung und Lambert-Reflektor Ein Körper strahlt isotrop (gleich in alle Richtungen), wenn er aus allen Richtungen gleich hell erscheint (z.B. Schnee). Ein Lambert-Reflektor reflektiert alle eintreffende Strahlung und verteilt sie isotrop. Bei isotroper Strahlung hängt also die Strahldichte I nicht vom Winkel ab:

16 Spektrale Einheiten Strahlung ist wellenlängenabhängig; daher lassen sich alle Strahlungsmaße auch spektral ausdrücken. Da wir die Spektralität durch verschiedene Maße (Wellenlänge, Frequenz, Wellenzahl) beschreiben können, gibt es auch verschiedene spektrale Strahlungsmaße, z.B. für die Strahlungsflussdichte F. Damit gilt für Umrechnungen zwischen spektralen Einheiten: Analoges gilt für spektrale Strahldichten I λ, I ν, und I k

17 II Plancksches Strahlungsgesetz Absorbiert ein Körper alle auf ihn auftreffende Strahlung (schwarzer Strahler), dann strahlt dieser Körper isotrop diese Energie wieder ab (Energieerhaltung) in einer eindeutigen Funktion der Temperatur T.und der Wellenlänge λ, B λ (T) (Planck, 1901) Wellenlänge, λ B λ (T), 10 7 W/(m 2 sr μm)

18 II Wiensches Verschiebungs- gesetz Wellenlänge, λ B λ (T), 10 7 W/(m 2 sr μm) Das Maximum der Planckschen Strahlung verschiebt sich mit zunehmender Temperatur nach kürzeren Wellenlängen Beispiel: T=6000 K λ max =0,5 μm (grün) λ max =0,8 μm (nahes IR)

19 Wiensches Verschiebungs- gesetz Wellenlänge λ, μm B λ, W/(m 2 sr μm Durch Einsetzen der Gleichung für λ max in die Planck-Funktion wird der Exponent unter dem Bruchstrich konstant und man erhält: D.h. die Planck-Funktion im Maximum B λmax nimmt um genau 5 Größenordnungen ab, wenn die Wellenlänge λ um eine Größenordnung zunimmt.

20 II Stefan-Boltzmann-Gesetz Das Stefan-Boltzmann-Gesetz gibt die Temperatur- abhängigkeit der spektral integrierten Strahlungsflussdichte der Planck-Strahlung E an. E lässt sich wie folgt aus der Planck-Strahlung ableiten:

21 II Kirchhoffsches Gesetz Gesetz für den grauen Strahler: Absorbiert ein Körper nur den Teil ε(λ)<1 der auftreffenden Strahlung dann gilt für seine Ausstrahlung: Bogenlampe (T B sehr heiss) Natrium-Dampf absorbiert bei λ N und emittiert –nur dort - entsprechend eigener Temperatur (T N viel kälter als T B ) B λ (T B )B λ (T B )(1-ε(λ))+ B λ (T N )ε(λ) Selbstumkehr von Spektrallinien

22 Kirchhoffsches Gesetz und der 2. Hauptsatz der Thermodynamik Schwarz T S, ε, ε=1 Grau T G, ε, ε mit ε Absorptionsvermögen ε Emissionsvermögen Annahme: Beide Temperaturen seien gleich, doch für den grauen Körper gelte ε ε :

23 Absorption von Strahlung durch atmosphärische Gase (nach Valley 1965) So wie Natriumdampf wirken auch die atmosphärischen Gase : 1. Sie absorbieren Strah- lung sehr wellenlängen- selektiv. 2. Sie emittieren aber auch genau nur bei den Wellenlängen bei denen sie absorbieren.

24 (nach Bolle 1982) Emissionsspektrum der Atmosphäre In polaren Breiten ist die Atmosphäre oft wärmer als der Untergrund -> weniger Ausstrahlung im IR-Fenster In der Ozonbande im Zentrum des IR-Fensters kann man (bei vorhandenem Ozon) die Temperatur der Obergrenze der Ozonschicht ableiten. Der meiste Wasserdampf.

25 Kurzwelliges (solares) Reflexionsvermögen (Albedo) von Oberflächen Oberfläche% % Reiner Neuschnee reiner Nassschnee Altschnee Reines Gletschereis Unreines Gletschereis See-Eis Meer, Seen Nasser Sand Trockener Sand Beton Asphalt Dunkler Boden Wald Wiesen und Felder

26 Spektrale Eigenschaften von Vegetation Absorption eines Spinatblattes und des Chlorophyllextraktes davon (gestrichelt) Reflexion, Absorption und Transmission eines Pappelblattes (nach Larcher 1994)

27 Übungen zu II.5.2 Leite aus der spektralen Strahldichte eines schwarzen Körpers nach Planck in Abhängigkeit von der Wellenlänge B λ die Formulierung für die Wellenzahl k=2π/λ, also B k, ab. Wie ist der Zusammenhang zwischen Strahldichte und Strahlungsflussdichte, wenn die Strahldichte proportional zum Cosinus des Zenitwinkels abnimmt?

28 II.5.3 Solare und terrestrische Strahlung - Strahlungsbilanz des Systems Erdoberfläche-Atmosphäre - Solarkonstante Mittlere solare Einstrahlung in das System Ausstrahlungstemperatur der Erde Treibhauseffekt der Atmosphäre

29 II Solarkonstante Die Solarkonstante I k ist die Strahlungsflussdichte, die extraterrestrisch an der Erde (im Abstand von 1496x10 8 m von der Sonne) auf einer Einheitsfläche senkrecht zur Strahlrichtung der Sonne ankommt. Aphel (Juli) ~1328 W/m 2 Perihel (Januar) ~1420 W/m 2 I k =1373±5 W/m² Aus der Solarkonstante kann man mit dem Stefan-Boltzmann-Gesetz unter der Annahme, dass die Sonne ein schwarzer Strahler ist, die Strahlungstemperatur der Sonne berechnen. r S-E rSrS σT4σT4 IkIk

30 II Mittlere solare Einstrahlung IkIk rErE rErE Im Mittel über eine Tag und gemittelt über die Erdoberfläche kommen (ohne Berücksichtigung der Atmosphäreneffekte an der Erdoberfläche an:

31 II Ausstrahlungstemperatur des Systems Erde-Atmosphäre Die Erde muss die von der Sonne absorbierte Strahlungsenergie wieder abgeben, da sie sich nicht ständig erwärmt. Die Erde gibt diese Energie durch Ausstrahlung ins All wieder ab. Dieser Ausstrahlung kann man nach dem Stefan-Boltzmann-Gesetz eine Temperatur zuordnen – die Strahlungsgleichgewichtstemperatur T E der Erde. Zu berücksichtigen bei dieser Rechnung ist, dass die Erde nicht alle Sonnenstrahlung absorbiert, sondern einen Teil – die planetare Albedo α - (z.B. durch Reflexion an Wolken) ins All reflektiert TETE I k /4 α σTE4σTE4

32 Zusammenfassung T S ~10 6 K Photosphäre T S ~6000K 6x10 7 W/m² 1373 W/m² ~240 W/m² absorbiert 1373 W/m² 343 W/m² α=30% σT E 4, T E =255 K

33 Spektrale Darstellung der Haushaltskomponenten Linerare Achsen λ logarithmisch Flächen unter den Kurven sind in beiden Fällen proportional zur Strahlungsenergie.

34 II Treibhauseffekt der Atmosphäre Unter dem Treibhauseffekt der Atmosphäre versteht man die Beobachtung, dass die Temperatur nahe der Erdoberfläche (in 2 m Höhe im Mittel ca. 287 K) höher ist als die Ausstrahlungstemperatur der Erde (ca. 255 K), die sich im Strahlungsgleichgewicht mit Sonne und Weltall einstellen würde Dies lässt sich durch ein einfaches 2-Schichten-Modell veranschaulichen, das annimmt: a)Im solaren Spektralbereich ist die Atmosphäre bis auf Wolken vollständig transparent b)Im terrestrischen Spektralbereich ist die Atmosphäre ein schwarzer Körper. Atmo- sphäre Erd- ober- fläche solar terrestrisch I k /4α I k /4 σTB4σTB4 σTA4σTA4 σTA4σTA4

35 Treibhauseffekt bei grauer Atmosphäre Die Annahme einer im terrestrischen Spektralbereich schwarzen Atmosphäre führt zu zu hohen Oberflächentemperaturen. Man erreicht eine Verallgemeinerung/Verbesserung, wenn man die Atmosphäre mit einer Emissivität ε<1 im Terrestrischen versieht. Sie berücksichtigt, dass es auch im terrestrischen Spektralbereich Fenster gibt, z.B. zwischen 8 und 12 μm. Atmo- sphäre Erd- ober- fläche solar terrestrisch I k /4α I k /4 σTB4σTB4 εσT A 4 (1-ε)σT B 4 Die gesamte terrestrische Ausstrahlung (die wie vorher (1-α)I k /4 ausgleichen muss) setzt sich nun aus Strahlung der Atmosphäre und des Bodens zusammen. Für den beobachteten mittleren Wert für T B =288,15 K ergibt sich ε zu 0,7706 und T A =242,30 K.

36 Übungen zu II.5.3 (1) Wie ändert sich nach dem in der Vorlesung besprochenen einfachen Modell (nur eine Atmosphärenschicht) die Oberflächentemperatur der Erde, wenn sich die Albedo (30%) oder die Solarkonstante (1373 Wm -2 ) oder die langwellige Emissivität der Atmosphäre (0.7706) um 1% ihres Wertes ändern? Welche Oberflächentemperaturänderungen entsprechen nach dem einfachen Modell der Variation der Solarkonstanten durch die elliptische Erdbahn um die Sonne?

37 Übungen zu II.5.3 (2) Erstellen Sie ein 3-Flächen- Treibhausmodell der Atmosphäre. Die Atmosphäre wird hier von 2 Schichten repräsentiert, welche beide das gleiche Absorptions- vermögen besitzen. Wir wissen, dass die global gemittelte Temperatur an der Erdoberfläche etwa T B =288.15K beträgt. (a) Berechne aus den Bilanzgleichungen (b) Nun lassen sich die Temperaturen T A1 und T A2 bestimmen. (c) Bewerten Sie diesen Ansatz, das ursprüngliche Treibhausmodell, in dem die Atmosphäre ja nur durch eine Schicht repräsentiert wird, weiter zu verfeinern. Wie sinnvoll ist das Ergebnis (vertikaler Temperaturgradient?), welche zusätzlichen Annahmen würden das Modell verbessern?

38 II.5.4 Phänomenologie der Strahlungsflussdichten Globale und langzeitliche Mittel Tagesgang der Strahlungsflussdichten und der gesamten Energiebilanz an der Erdoberfläche Globale räumliche Verteilung der Strahlungsbilanz Strahlungstransportgleichung

39 II Globale langzeitliches Mittel Bezeichnungen: S direkte solare Strahlung D diffuse Strahlung K gesamte aufwärtige solare Strahlung K gesamte abwärtige solare Strahlung (S+D) Q K =S+D-K kurzwellige Strahlungsbilanz L atm. Gegenstrahlung R terr. Reflexstrahlung A Emissionsstrahlung der Oberfläche L=A+R gesamte aufwärt. terrestrische Strahlung QL= L - L langwellige Strahlungsbilanz H turb. fühlb. Wärmefluss E turb. lat. Wärmefluss Die Atmosphäre verliert mehr an terrestrischer Strahlung (-53) als sie an solarer absorbiert (+25). Der Nettoverlust (-28) wird durch die turbulenten Flüsse ausgeglichen.

40 II Tagesgang der Strahlungsflussdichten an der Erdoberfläche (a) , Wiese bei Hamburg-Fuhlsbüttel Die solare Einstrahlung ist tagsüber etwa Sinus-förmig (nachts null). Die solare Strahlungsbilanz verläuft analog, doch ist sie nachts negativ, da keine solare Einstrahlung herrscht, aber langwellige Nettoausstrahlung (mehr Ein- als Ausstrahlung).

41 Tagesgang der Strahlungsflussdichten an der Erdoberfläche (b) Die solare Einstrahlung ist tagsüber wieder etwa Sinus- förmig, aber Modifikation durch Tallage. Die ausgeglichene langwellige Bilanz am Morgen (und damit augeglichene Strahlungsbilanz) lässt auf Nebel schließen. Die Albedo zeigt eine vom Sonnenwinkel abhängige Variation auf (höher bei kleinen Elevationswinkel)

42 II Tagesgang der Gesamtenergiebilanz an der Erdoberfläche (a) Die turbulenten Flüsse gleichen über Landoberflächen i.w. die Strahlungsbilanz aus. Der turbulente Fluss fühlbarer Wärme geht Nachts dabei meist von der Atmosphäre zur Erdoberfläche. Über vegetationslosen Böden (Wüste) dominiert der Fluss fühlbarer Wärme H 0 über den der latenten Wärme E 0. Über Vegetation dominiert der Fluss latenter Wärme über den der fühlbaren Wärme.

43 Tagesgang der Gesamtenergiebilanz an der Erdoberfläche (b) Über Wasseroberflächen sind die turbulenten Flüsse von Strahlung und Bodenwärme- strom entkoppelt. Der Bodenwärmestrom ist hier weitgehend der solare Strahlungsfluss, der in das Wasser hinein geht und dort in verschiedenen Tiefen absorbiert wird. Die turbulenten Flüsse sind weitgehend proportional zur Windgeschwindigkeit.

44 II Globales Breitenmittel der Strahlungsbilanz Im Breitenkreismittel dominiert in den niedrigen Breiten die Absorption solarer Strahlung die Emission terrestrischer Strahlung. Die Strahlungsbilanz ist dort positiv. Die Strahlungsbilanz ist negativ in den mittleren und hohen Breiten, weil die terrestrische Ausstrahlung die Absorption solarer Strahlung überwiegt. Diese differentielle Erwärmung des Systems Erde-Atmosphäre schafft Temperaturgegensätze, welche die Ursache atmosphärischer Bewegung bilden. Die atmosphärische Bewegung gleicht zusammen mit den Ozeanströmungen die ungleichen Wärmebilanzen aus.

45 II Globale Verteilung der Strahlungsbilanz aus Satellitendaten

46 Übungen zu II.5.4 Beschreibe die wesentlichen Unterschiede zwischen den Tagesgängen der Energieflüsse an der Erdoberfläche über Land und über See. Warum sind bei Vorhandensein von Wolken die Tagestemperaturen geringer, die Nachttemperaturen höher als bei wolkenfreiem Himmel? Die Strahlungsbilanz über der Sahara ist im Jahresmittel negativ. Worauf ist das zurück zu führen?

47 II.5.5 Berechnung der Strahlungsübertragung Die Divergenz des Strahlungsflusses bestimmt Erwärmung oder Abkühlung einer Luftschicht. Das Gesetz von Bouguer-Lambert beschreibt die exponentielle Abnahme der Strahlungsintensität beim Durchgang duchr die Atmosphäre. Die Strahlungsübertragungsgleichung (SÜG) beschreibt vollständig den Strahlungsdurchgang durch die Atmosphäre.

48 Strahlungsdivergenz und Erwärmung/Abkühlung der Luft Die beiden gezeichneten Fälle seien Beispiele für die vertikale Veränderung der Nettostrahlungs- flussdichte (F (nach oben) – F(nach unten) in der Atmosphäre. In beiden Fällen muss offensichtlich zwischen z 1 und z 2 Strahlung absorbiert werden, sich also nach dem 1. Hauptsatz (diabatischer Term) die Luftschicht erwärmen. Offensichtlich kommt es zur Strahlungsabsorption immer, wenn F (ist positiv wenn nach oben gerichtet) mit z abnimmt(!). Es gilt genauer (Einheiten!): z2z2 z1z1 Fall 1 Fall 2 F(z 2 ) F(z 1 ) Verifiziere: Wenn die Troposphäre (ca. 10 km dick) 50% der solaren Einstrahlung bei wolkenfreiem Himmel (ca W/m²) absorbiert, dann erhöht sich die Temperatur der Atmosphäre pro Stunde um ca 0,2 K.

49 Gesetz von Bouguer-Lambert Die relative Abschwächung der Strahldichte I um den Betrag dI, also dI/I, entlang eines Weges s ist: proportional zur Weglänge ds proportional zur Dichte des Mediums ρ und proportional zu einem Medium-spezifischen Massenextinktionskoeffizienten k e. ds I(s) I(s+ds) =I(s)+dI ρ, k e Bei konstantem Volumenextinktionskoeffizient σ e erfolgt dann eine exponentielle Abnahme der Strahldichte beim Durchgang durch das Medium:

50 Strahlungsübertragungsgleichung (a) ds I λ (s, Ω) I λ (s+ds,Ω) I λ (s, Ω) B λ (s(T) Der Extinktion der Strahldichte durch Streuung (Ablenkung aus der Ursprungsrichtung) und Absorption nach dem Bouguer-Lambert-Gesetz stehen zwei Strahlungsquellen gegenüber: a)Emissionsstrahlung nach dem Planckschen und dem Kirchhoffschen Gesetz, und b)Streustrahlung, die aus allen anderen Richtungen in die betrachte Richtung umgelenkt wird. Alles wird kombiniert in der Strahlungsübertragungsgleichung auch Schuster-Schwarzschild-Gleichung genannt:

51 Strahlungsübertragungsgleichung (b) ds I λ (s, Ω) I λ (s+ds,Ω) I λ (s, Ω) B λ (s(T) Ω Ω mit σ a Volumenabsorptionskoeffizient σ s Volumenabsorptionskoeffizient P Streuphasenfunktion (Wahrscheinlichkeit, dass ein Strahl aus der Richtung Ω kommend in die Richtung Ω umgelenkt wird). Die SÜG kombiniert die Gesetze von Bouguer- Lambert, Planck und Kirchhoff in einer Energiebilanzgleichung. Die SÜG gilt nur monospektral, das heißt nur für ein sehr feines Wellenlängenintervall.

52 Übungen zu II.5.5 Ein Gas habe einen Massenabsorptionskoeffizienten von 0.01 m 2 kg -1 für alle Wellenlängen. Die Streuung sei vernachlässigbar ebenso wie die Emission. Welcher Bruchteil eines Strahls wird absorbiert, wenn er vertikal durch eine Schicht geht, die 1 kg m -2 des Gases enthält? Wie groß ist die optische Dicke der Schicht? Wieviel des Gases benötigt man in der Schicht, um den Strahl beim Durchgang um die Hälfte zu schwächen?

53 II.5.6 Optische Erscheinungen in der Atmosphäre Streuung von Strahlung an Partikel führt zu Rayleigh- und Mie-Streuung Lichtbrechung an Grenzflächen unterschiedlicher Medien führt zur Änderung der Strahlrichtung und zu farbigen Ringen Lichtbeugung an Grenzen sehr großer Partikel führt durch Interferenz zu farbigen Ringen

54 Rayleigh- und Mie-Streuung (a) Strahlung besteht aus elektromagnetischen Wellen. Das oszillierende elektromagnetische Feld regt in allen dielektrischen Medien elektrische und magnetische Dipole und Multipole zum Schwingen an. Die Strahlung des dabei erzeugten Feldes nennt man Streustrahlung. Je nach Größe des dielektrischen Teilchens relativ zur Wellenlänge weist das Streufeld eine charakteristische wellenlängenabhängige und winkelabhängige Verteilung auf. Sind die streuenden Teilchen viel kleiner als die Wellenlänge, so dominiert die Dipolstreuung und der Streukoeffizient σ s ist proportional zu λ -4 (Rayleigh- Streuung). Sind die Teilchen in der Größenordnung der Wellenlänge, so ist die wellenlängenabhängigkeit des Streukoeffizienten schwächer (λ- 1,3 ) und zeigt dominierende Vorwärtsstreuung (Mie-Streuung).

55 Rayleigh- und Mie-Streuung (b) Rayleigh-StreuungMie-Streuung Bei sichtbarem Licht erfolgt diese durch die Luftmoleküle. Erzeugt Himmelsblau da Blau stärker gestreut wird als Rot. Aus gleichem Grunde erscheint die untergehende Sonne rot (Blau ist rausgestreut) Rayleigh-Streuung ist sehr polarisiert (nur eine Polarisationsrichtung) rechtwinklig zur Sonnenstrahlrichtung Bei sichtbarem Licht erfolgt dies durch Dunst, aber vor allem Wolkentropfen (Durchmesseer ca. 10 μm). Mie-Streuung erscheint wegen der schwachen Wellenlängenabhän- gigkeit weiß. Daher sind Wolken und Dunst im Sonnenlicht weiß oder grau.

56 Lichtbrechung (a) Sonne (oder ein Gegenstand am Horizont) erscheint höher als in Wirklichkeit. Die scheinbare Abplattung von Sonne und Mond entsteht durch die Abhängigkeit der Krümmung vom Winkel. Der grüne Strahl (sehr seltenes Phänomen) entsteht durch die Wellenlängenabhängigkeit der Brechung. Man müsste bei Sonnenuntergang zuletzt Blau sehen, sieht aber Grün, da Blau schon rausgestreut ist (Rayleigh- Streuung)

57 Lichtbrechung (b) Unterschiedliche Strahlwege des Lichtes resultieren durch Gradienten im Brechnungsindex der Luft, z.B. durch Temperaturgradienten. Diese führen zu mehreren Bildern von Gegenständen im Auge an unterschiedlichen Orten (Fata Morgana).

58 Regenbogen

59

60 Halo

61

62 Lichtbeugung Kränze um Sonne und Mond (Höfe) und die Glorie (Heiligenschein) entstehen durch Beugung an Wassertropfen und Eispartikeln bzw. an unserem Kopf. Höfe sind umso größer je kleiner die Partikel sind. Höfe sind innen blau und außen rot (anders als bei Regenbogen und Halo).

63 Glorien und Heiligenscheine

64 Übungen zu II.5.6 Der Rauch einer Zigarette erscheint blau, wenn er sofort wieder ausgeblasen wird, dagegen weiß, wenn er für längere Zeit im Mund behalten wird. Warum? Warum sind der Himmel blau, die Wolken weiß, die Sonne rötlich, der innere Regenbogen außen rot?


Herunterladen ppt "Einführung in die Meteorologie - Teil II: Meteorologische Elemente - Clemens Simmer Meteorologisches Institut Rheinische Friedrich-Wilhelms Universität."

Ähnliche Präsentationen


Google-Anzeigen