Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

SBI00643 Fachbezogene Fortbildung für Fachberater im Fach Informatik an Gymnasien Theoretische Informatik (TI) – Theoretische Grundlagen von Programmiersprachen.

Ähnliche Präsentationen


Präsentation zum Thema: "SBI00643 Fachbezogene Fortbildung für Fachberater im Fach Informatik an Gymnasien Theoretische Informatik (TI) – Theoretische Grundlagen von Programmiersprachen."—  Präsentation transkript:

1 SBI00643 Fachbezogene Fortbildung für Fachberater im Fach Informatik an Gymnasien Theoretische Informatik (TI) – Theoretische Grundlagen von Programmiersprachen mit der Lernumgebung AtoCC Sächsisches Bildungsinstitut, F+T-Zentrum Meißen Christian Wagenknecht, Michael Hielscher Meißen,

2 Das Wichtigste zuerst! Vielen Dank an Herrn Wolfgang Rafelt Erster Kontakt:

3 Zeitplan und Ziele 3 Mittwoch, , 15:00-17:30: Einführung, Installation, ZR-Compiler (TDiag) Donnerstag, , 09:00-10:30: Formale Grammatik für ZR inkl. Grundbegriffe (kfGEdit) 11:00-12:30: DEA für Zahl und Farbwert (AutoEdit), reguläre Ausdrücke 13:30-15:00: DKA für kfS (AutoEdit), Beispiel: WH n [...] 15:15-17:30: Compiler = Analyse + Synthese (VCC) Analyse: Scanner, Parser; Zielsprache: PS; TDiagramm Freitag, , 09:00-10:30: Projekt "Notensprache" – Quellsprache, Zielsprache, Werkzeuge; Übersetzungsmodell, Grammatiken, reduzierte Gramm. 11:00-12:30: DEA, reguläre Ausdrücke, Compiler, TDiag (Projektende) 13:30-14:00: Turingmaschinen, Hinweis auf Automaten mit Ausgabe (Mealy-, Moore-Automaten, nicht LP-Gegenstand) Ende des Kurses

4 Lehrplan Ziele und Inhalte 4 Nr. Bundesland Lehrplaninhalt (Lernbereich)Pflichtbestandteil 1 Baden-Württemberg Bereich der theoretischen Informatik (Automaten, Berechenbarkeit) nein 2 Bayern 3. Formale Sprachen (noch Entwurf) 3Berlin 4.4 Sprachen und Automatenja (auch GK) 4Brandenburg4.4 Sprachen und AutomatenJa (auch GK) 5Bremen Grundlagen der Theoretischen Informatik (Automaten, formale Sprachen) nein 6Hamburg Formale Sprachen, endliche Automaten, Kellerautomaten, Scanner, Parser, Ableitungsbaum nein 7Hessen Formale Sprachen und Grammatiken Automaten, Fakultativ: Übersetzerbau ja (auch GK) 8Mecklenburg-Vorpommern4.4 Sprachen und Automaten ja (auch GK) 9Niedersachsen Eigenschaften endlicher Automaten Aspekte formaler Sprachen nein 10 Nordrhein-Westfalen Endliche Automaten und formale Sprachen nein 11 Rheinland-Pfalz Formale Sprachen und Automaten zur Sprachbeschreibung und Spracherkennung ja (nur LK) 12 Saarland Automaten und formale Sprachen Fakultativ: Übersetzerbau ja (auch GK) 13 Sachsen 8 A: Formale Sprachen, Kellerautomat, Akzeptor nein 14 Sachsen-Anhalt Endliche Automaten und formale Sprachen nein 15 Schleswig-Holstein Automaten als mögliches Themengebiet nein 16 Thüringen Themenbereich 7.3: Einblick in formale Sprachen nein In den meisten Bundesländern sind ausgewählte Inhalte der TI Lehrplaninhalt der Sek. II:

5 Lehrplanauszug Hessen Verbindliche Unterrichtsinhalte/Aufgaben: Formale Sprachen und Grammatiken reguläre und kontextfreie Grammatiken und Sprachen Anwendung mit Syntaxdiagrammen Chomsky-Hierarchie (LK) kontextsensitive Sprachen (LK) Endliche Automaten Zustand, Zustandsübergang, Zustandsdiagramm Zeichen, Akzeptor Simulation realer Automaten (z. B. Getränkeautomat) Anwendung endlicher Automaten (z. B. Scanner) deterministische und nicht-deterministische Automaten (LK) reguläre Ausdrücke (LK) Mensch-Maschine-Kommunikation (LK) Kellerautomaten (LK, GK fakultativ) Automat mit Kellerspeicher kontextfreie Grammatiken Klammerausdrücke, Rekursion Turing- oder Registermaschine (LK, GK fakultativ) Turing- oder registerberechenbar Churchsche These Computer als universelle symbolverarbeitende Maschine Verhältnis Mensch-Maschine Fakultative Unterrichtsinhalte/Aufgaben: Übersetzerbau Scanner, Parser, Interpreter und Compiler z. B. Steuersprache für Roboter, LOGO, Plotter oder miniPASCAL 5

6 Lernbereich 8 A (Sächs. Lehrplan) 6 GK Informatik f. Jahrgangsstufen 11 und 12, wird ab Schuljahr 2008/09 wirksam endlicher Automat

7 TI-Inhalte in der Schulinformatik: Probleme und Chancen Blick in die Lehrpläne verschiedener Bundesländer totale Überfrachtung mit Fachinhalten Formulierung von Wunschvorstellungen (z.B. TI + Compiler) (geringe didaktische Erfahrung) Besondere Spezifik der TI (mathematische Denktechniken vs. ingenieurwissenschaftlicher Arbeitskontext der SE) wird nicht ausreichend berücksichtigt Inhalts/Zeit-Relation Verinnerlichung von Inhalten Kompetenz und Motivation des Lehrpersonals 7

8 Gefühlssituation der Lehrenden "TI wollte ich nie machen." "TI hat mich nie richtig interessiert." "TI war mir immer zu theoretisch und abstrakt." "Die TI-Dozenten waren suspekt – TI im postgradualen Studium erinnere ich mit Grausen." "Die TI-Inhalten helfen mir nicht, wenn das Schulnetzwerk mal wieder zusammenbricht."... 8

9 TI-Inhalte in der Schulinformatik: Probleme und Chancen Zeit-Problem, Inhalte-Problem (Zusammenfassung von oben) Manche Lehrende mögen es nicht. – Motivationsproblem Manche Lehrende können es nicht richtig. - Qualifikationsproblem SchülerInnen/Studierende fragen gelegentlich: "Wann geht es denn nun endlich richtig los mit der Informatik? Ach so, das ist es schon." - Vermittlungsproblem "Ergebnis": Wenn möglich, TI weglassen. FALSCH!!! Chance: Informatik als Wissenschaft repräsentieren! (wie Mathematik und Naturwissenschaften) Sonst: Studienabbrecher als konkrete Folge!!! 9

10 Didaktische Software für TI in Schulen: diverse Simulationstools oder Lernumgebungen, wie Kara; meist von enthusiastischen LehrerInnen entwickelt in Hochschulen: Systeme für die Lehre, wie JFLAP LEX und YACC für die Hand des Ingenieurs 10 Simulationstool – Bildungsserver Hessen

11 Unsere Ziele – nicht ohne AtoCC!!! 11 1.Belastbare Motivation für TI-Inhalte durch herausfordernde Start-Fragestellung mit Praxisrelevanz und Modellierung eines Zielsystems (Sprachübersetzer) am Anfang 2.Vermittlungs-/Anwendungszyklen für TI-Wissen mit Projekt- bezug (Praxis nicht als "Anhängsel" zur Theorie) 3.Komplexe Anwendung von TI-Inhalten auf sehr hohem Abstraktionsniveau (automatisierte Compiler-Generierung), Rückkehr zur und Konkretisierung der Modellierungsebene Behauptung: Dabei ist AtoCC ein unverzichtbares Hilfsmittel.

12 Beispiel: ZR – eine Sprache für einen Zeichenroboter 12 Praxisnahe (echte!) Aufgabe mit grafischer (akustischer) Ausgabe: Entwickeln Sie einen Compiler, der die Sprache ZR (ZeichenRoboter) in PDF übersetzt. (Schülergerecht formulieren!) Eingabewort (in ZR): WH 36 [WH 4 [VW 100 RE 90] RE 10] Sprachelemente: VW nVorWärts n Schritte RE nRechts um n Grad WH n [... ]WiehderHole n-mal [...] FARBE fStiftFARRBE f STIFT nStrichstärke n Aufgabe: Verwenden Sie den fertigen Compiler zr2pdf blume.zr ( konsole.bat aufrufen, blume.zr ansehen)

13 Beispiel: ZR – eine Sprache für einen Zeichenroboter 13 Der Zeichenroboter kann auch mehr: BunteBlume.zr

14 Beispiel: ZR – eine Sprache für einen Zeichenroboter 14 Weiterer Ablauf: 1.Modellierung der Problemlösung mit TDiag 2.Syntax-Definition von ZR: formale Grammatik, Ableitungsbaum mit kfGEdit 3.Parser Akzeptoren Automatenmodelle (EA, KA) mit AutoEdit 4.Arbeitsteilung: Scanner, Parser 5.Zielsprachenbezug automatisierte Compiler-Entwicklung mit VCC 6.Teilsysteme werden in Modellierung eingebracht (TDiag) 7.Ergebnis: lauffähiger (nichttrivialer) Übersetzer, den man benutzen kann! TDiag, kfGEdit, AutoEdit, und VCC sind Bestandteile von AtoCC.

15 Beispiel: ZR – eine Sprache für einen Zeichenroboter Wir wollen zunächst den Übersetzungsprozess entwerfen modellieren Verwendung von T-Diagrammen: T-Diagramme bestehen aus 4 Bausteintypen. Compilerbaustein, Programmbaustein, Interpreterbaustein und Ein/Ausgabe-Baustein 15 CompilerProgrammInterpreter Ein/Ausgabe an Programmbaustein

16 Beispiel: ZR – eine Sprache für einen Zeichenroboter T-Diagramm: 1. Entwurf 16 ZR2PDF möchte niemand schreiben!!!

17 Beispiel: ZR – eine Sprache für einen Zeichenroboter T-Diagramm: 2. Entwurf 17 ZR2PS werden wir entwickeln, PS2PDF und Acrobat Reader wird vom System bereitgestellt.

18 Beispiel: ZR – eine Sprache für einen Zeichenroboter Nachdem wir nun wissen, wie unser Compiler später zur Übersetzung eingesetzt werden soll, wenden wir uns der Entwicklung des Compilers zu. Sprache näher betrachten Terminale und Nichtterminale festlegen formale Grammatik definieren Ableitungsbäume erzeugen 18

19 Beispiel: ZR – eine Sprache für einen Zeichenroboter Betrachten wir die Sprache ZR und versuchen wir ihren Aufbau zu beschreiben: VW 50 RE 270 RE 45 WH 2 [VW 100] WH 4 [VW 100 RE 100] WH 36 [WH 4 [VW 100 RE 90] RE 10] Magnetkarten an der Tafel 19

20 Beispiel: ZR – eine Sprache für einen Zeichenroboter Beschreiben wir den Baustein Zahl genauer: 0 soll in ZR keine Zahl sein, da VW 0 oder RE 0 keine Veränderung herbeiführen. Vorangestellte Nullen, wie bei 0815, wollen wir auch nicht erlauben. Ergänzen wir unsere Grammatik um: Zahl ErsteZiffer Ziffern Ziffern Ziffer Ziffern | Ziffer 0 | 1 |... | 9 ErsteZiffer 1 | 2 |... | 9 20

21 Beispiel: ZR – eine Sprache für einen Zeichenroboter 21

22 Beispiel: ZR – eine Sprache für einen Zeichenroboter 22

23 Beispiel: ZR – eine Sprache für einen Zeichenroboter 23

24 Beispiel: ZR – eine Sprache für einen Zeichenroboter Programm Anweisungen Anweisungen Anweisung Anweisungen | EPSILON Anweisung VW Zahl | RE Zahl | WH Zahl [ Anweisungen ] | FARBE Farbwert | STIFT Zahl Farbwert rot | blau | gruen | gelb | schwarz Zahl ErsteZiffer Ziffern Ziffern Ziffer Ziffern | EPSILON Ziffer 0 | 1 |... | 9 ErsteZiffer 1 | 2 |... | 9 24

25 Kontextfreie Grammatik 25 Hervorzuhebendes Problem bei kfG: Mehrdeutigkeit; Eingabewort: if a1 then if a2 then s1 else s2 S -> if E then S | if E then S else S | s1 | s2 E -> a1 | a2 kfG, d.h. Regeln haben die Gestalt X, mit |x| | | Hinweis auf Chomsky-Hierarchie (s. TI-Vorlesungen); Grammatik-Transformationen in Betracht ziehen Grammatikdefinitionen immer vollständig angeben! G=(N,T,P,s) Dangling else Lösung: S -> S1 | S2 S1 -> if E then S1 else S1 | s1 | s2 S2 -> if E then S | if E then S1 else S2 E -> a1 | a2

26 Beispiel: ZR – eine Sprache für einen Zeichenroboter Automaten als Akzeptoren für Sprachen Akzeptor prüft, ob ein Wort zur Sprache gehört oder nicht. (Keine Ausgabe Wort akzeptiert) (Thema: Programmiersprachen und Syntaxfehler) Wir nehmen zwei Ausschnitte aus den Produktionen: Zahl ErsteZiffer Ziffern Ziffern Ziffer Ziffern | EPSILON Ziffer 0 | 1 |... | 9 ErsteZiffer 1 | 2 |... | 9 Anweisungen Anweisung Anweisungen | EPSILON Anweisung VW Zahl | WH Zahl [ Anweisungen ] 26

27 Beispiel: ZR – eine Sprache für einen Zeichenroboter Kleiner Sprachausschnitt: Zahl ErsteZiffer Ziffern Ziffern Ziffer Ziffern | EPSILON Ziffer 0 | 1 |... | 9 ErsteZiffer 1 | 2 |... | 9 27

28 Beispiel: ZR – eine Sprache für einen Zeichenroboter 28

29 Übungsaufgabe 1. Geben Sie eine (reguläre) Grammatik für die Sprache der Uhrzeiten an. 2. Entwerfen/Erzeugen Sie einen Automaten. Vorgehen (allgemein): Beispielwörter, Beispiel-Nichtwörter, Muster, Muster spezifizieren, Grammatik entwerfen, Beispielwörter testen, Grammatik "justieren" bzw. transformieren bzw. nach alternativer Idee neu entwerfen, Automat generieren (hier: regGr NEA DEA) 29

30 Lösung der Übungsaufgabe Muster: ab : cd, a=0,1,2; b=0,1,2,3,4,5,6,7,8,9, wenn a=0,1 b=0,1,2,3, wenn a=2 c=0,1,2,3,4,5; d=0,1,2,3,4,5,6,7,8,9 U -> A : C A -> 0 B | 1 B | 2 Q B -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Q -> 0 | 1 | 2 | 3 C -> 0 B | 1 B | 2 B | 3 B | 4 B | 5 B... ist nicht regulär (Prüfknopf in kfGEdit) – erste Regel! (aber eine schöne kfG) 30

31 Lösung der Übungsaufgabe Regelbildung – rechte Seiten: Erstes Zeichen (Terminal) und Rest (Nichtterminal) U -> 0 H | 1 H | 2 K H -> 0 B | 1 B | 2 B | 3 B | 4 B | 5 B | 6 B | 7 B | 8 B | 9 B B -> : C C -> 0 Z | 1 Z | 2 Z | 3 Z | 4 Z | 5 Z Z -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 K -> 0 R | 1 R | 2 R | 3 R R -> : C 31 Vollständige Definition angeben! s. kfGEdit

32 Lösung der Übungsaufgabe 32 DEA für die Sprache der Uhrzeiten: regGr NEA DEA

33 Lösung der Übungsaufgabe 33 Ein zugehöriger NEA ist konzeptionelle wesentlich übersichtlicher, erfordert aber eine grundlegende Behandlung des Nichtdeterminismus.

34 Beispiel: ZR – eine Sprache für einen Zeichenroboter Anweisungen Anweisung Anweisungen | EPSILON Anweisung VW n | WH n [ Anweisungen ] 34 DKA für obigen Grammatik-Ausschnitt

35 Beispiel: ZR – eine Sprache für einen Zeichenroboter 35

36 Beispiele für DKA und NKA 36 Musterbeispiele: 1.Sprache der Palindrome über {0,1} 2.Sprache der Palindrome über {0,1} mit (durch !) markierter Wortmitte Für 1 gibt es keinen DKA, für 2 NKA und DKA. Studienaufgabe: DKA für (n>0).

37 Beispiele für DKA und NKA 37 Lösung: Sprache der Palindrome über {0,1} mit (durch !) markierter Wortmitte

38 Beispiel: ZR – eine Sprache für einen Zeichenroboter Aus der Kombination von kleinen endlichen Automaten und einem Kellerautomaten wird später unser Compiler bestehen. Für EA-Sprachen können auch reguläre Ausdrücke verwendet werden: Beispiel Zahl (nicht 0, ohne Vornullen): [1-9][0-9]* 38

39 Reguläre Ausdrücke für reguläre Sprachen 39

40 Reguläre Ausdrücke für reguläre Sprachen 40

41 Reguläre Ausdrücke für reguläre Sprachen Reguläre Ausdrücke zur Definition regulärer Sprachen Zahlen in ZR: [1-9][0-9]* 41 Aktuelle Syntax von RegExp ist dem Gebrauch als Filter in vielen PS angepasst. Z.B. [...] Zeichenauswahl – genau ein Zeichen aus... s. Arbeitsblatt: Reguläre Ausdrücke in Programmiersprachen.pdf Achtung: Rückwärtsreferenzen führen aus der Klasse der regulären Sprachen heraus.

42 Arbeitsweise des Compilers 42

43 Arbeitsweise eines Scanners 43 Ein- und Ausgabe des Scanners: Viele kleine endliche Automaten entscheiden welche Schlüsselworte im Quelltext stehen. Quelltext besteht aus Zeichen und der Rechner weiß noch nicht wie diese zusammengehören. Token als Paare [Tokenname, Lexem] z.B.: [Wiederhole, "WH"] [Zahl, "12"] [KlammerAuf, "["]

44 Beispiel: ZR – eine Sprache für einen Zeichenroboter Programm Anweisungen Anweisungen Anweisung Anweisungen | EPSILON Anweisung VW Zahl | RE Zahl | WH Zahl [ Anweisungen ] | FARBE Farbwert | STIFT Zahl Farbwert : rot|blau|gruen|gelb|schwarz Zahl : [1-9][0-9]* 44

45 Reguläre Grammatik NEA DEA 45 farbwert.txt

46 Beispiel: ZR – eine Sprache für einen Zeichenroboter Endliche Automaten (RegExp) für alle unsere Terminale: KlammerAuf: \[ KlammerZu: \] Wiederhole: WH Rechts: RE Vor: VW Stift: STIFT Farbe: FARBE Farbwert : rot|blau|gruen|gelb|schwarz Zahl: [1-9][0-9]* 46 S, T, I, F, T

47 Beispiel: ZR – eine Sprache für einen Zeichenroboter 47

48 Beispiel: ZR – eine Sprache für einen Zeichenroboter 48 per Hand ergänzen

49 Arbeitsweise des Parsers 49 Ein- und Ausgabe des Parsers: #false erfolgt meinst durch Ausgabe von Syntax Error Grammatik von ZR in Form eines Kellerautomaten Prüft ob Wort zur Sprache gehört Beinhaltet die aufgetretenen Terminale der Grammatik des Parsers

50 Beispiel: ZR – eine Sprache für einen Zeichenroboter Entwicklung des ZR2PS Compilers in VCC Übertragen der EA in die Scannerdefinition Übertragen der vereinfachten Grammatik in die Parserdefinition Entwickeln so genannter S-Attribute für die Zielcodegenerierung 50

51 Beispiel: Postscript als Zielsprache des ZR-Compilers 51 ZR PS PDF Eingabewort (in ZR): WH 36 [WH 4 [VW 100 RE 90] RE 10] Ausgabewort (in PS): %!PS-Adobe-2.0 /orient 0 def /xpos 0 def /ypos 0 def setrgbcolor /goto { /ypos exch def /xpos exch def xpos ypos moveto} def /turn { /orient exch orient add def} def /draw { /len exch def newpath xpos ypos moveto /xpos xpos orient sin len mul add def /ypos ypos orient cos len mul add def xpos ypos lineto stroke } def goto 100 draw 90 turn 100 … turn 10 turn

52 Beispiel: Zielcodegenerierung für ZR Zielcodegenerierung: Der Compiler soll PostScript erstellen nicht nur #true und #false ausgeben. Entwicklung von S-Attributen S-Attribute sind kleine Quelltextfragmente die für jede rechte Regelseite definiert werden können. Wird eine Regel angewendet wird auch das entsprechende Quellcodefragment ausgeführt. 52

53 Beispiel: ZR – eine Sprache für einen Zeichenroboter Die Platzhalter $1 bis $n: In S-Attributen verwenden wir Platzhalter für die Ergebnisse der einzelnen Regelbausteine. 53 $1 $2 VW 20 Eingabewort sei: VW 20 RE 10 Von einem Token ist $n immer des Lexem des Tokens ! Von einem Nichtterminal ist $n immer das Ergebnis $$ des Nichtterminals ! Von einem Token ist $n immer des Lexem des Tokens ! Von einem Nichtterminal ist $n immer das Ergebnis $$ des Nichtterminals ! $$ = "20 draw "

54 Von einem Token ist $n immer des Lexem des Tokens ! Von einem Nichtterminal ist $n immer das Ergebnis $$ des Nichtterminals ! Von einem Token ist $n immer des Lexem des Tokens ! Von einem Nichtterminal ist $n immer das Ergebnis $$ des Nichtterminals ! Beispiel: ZR – eine Sprache für einen Zeichenroboter Die Platzhalter $1 bis $n: In S-Attributen verwenden wir Platzhalter für die Ergebnisse der einzelnen Regelbausteine. 54 $1 $2 WH 4 4 Eingabewort sei: WH 4 [ VW 20 ] $3 [ [ $5 ] ] $4 20 draw $$ = "20 draw 20 draw 20 draw 20 draw " Alle $n und $$ sind vom Datentyp String !!!

55 Arbeitsweise des Compilers 55 Programm Anweisungen Anweisungen Anweisung Anweisungen | Anweisung VW Zahl | RE Zahl | WH Zahl [ Anweisungen ] | FARBE Farbwert | STIFT Zahl Programm Anweisungen Anweisungen Anweisung Anweisungen | Anweisung VW Zahl | RE Zahl | WH Zahl [ Anweisungen ] | FARBE Farbwert | STIFT Zahl WH 36 [WH 4 [VW 100 RE 90] RE 10] [Wiederhole, "WH"] [Zahl, "12"] [KlammerAuf" "["] … [Wiederhole, "WH"] [Zahl, "12"] [KlammerAuf" "["] … %!PS-Adobe-2.0 /orient 0 def /xpos 0 def /ypos 0 def setrgbcolor /goto { /ypos exch def /xpos exch def xpos ypos moveto} def … %!PS-Adobe-2.0 /orient 0 def /xpos 0 def /ypos 0 def setrgbcolor /goto { /ypos exch def /xpos exch def xpos ypos moveto} def …

56 Beispiel: ZR – eine Sprache für einen Zeichenroboter Anwenden des Compilers auf der Modellierungsebene der T-Diagramme in TDiag. 56

57 Beispiel: Musiksprache Das Beispiel soll Ihnen die Möglichkeit geben, die gezeigten Inhalte noch einmal selbst anzuwenden. Ein Beispiel für sehr einfache Musiksprachen sind ältere Handyklingeltöne. 57

58 Beispiel für Musiksprachen workshop-ringtone-converter.htm 58

59 Die Musiksprache ML Wir wollen unsere eigene Notensprache entwickeln für monophone Lieder (nur eine Stimme) Programmbeispiel: C1-2 G1-8 A0-4 A0-8 G0-4 G0-8 C0-8 P-2 59

60 Die Musiksprache ML Die Sprache ist so einfach, dass sie sogar regulär ist. Eine etwas komplexere Sprache könnte etwa Wiederholungen enthalten: [C1-2 G1-8 [A0-4 A0-8]] P-2 (typisches Klammerbeispiel für Kellerautomaten) 60

61 Die Musiksprache ML Erforschen Sie ML: Öffnen Sie den OrdnerSongs und starten Sie Console.bat 61 Aufgabe: Ändern Sie den Inhalt einer ML Datei um sich besser mit ML vertraut zu machen.

62 Vorgehensmodell 62 Implementierungs- ebene Modellebene Problemebene Software entwickelnSoftware nutzen

63 Entwicklung eines ML Interpreters Lösungsschritte: 1) Ein T-Diagramm erstellen 2) Eine formale Grammatik für ML erstellen 3) Eine Scanner- und Parserdefinition entwickeln 4) S-Attribute für die Regeln im Parser aufstellen 5) Den ML Interpreter generieren lassen 6) Den Interpreter mit Hilfe des T-Diagramms testen 63 Arbeitsblatt 1

64 Ein T-Diagramm für den ML Interpreter Verfassen Sie ein T-Diagramm für den ML Interpreter (geschrieben in Java Bytecode) welcher auf ein ML Programm angewendet wird. 64

65 Ein T-Diagramm für den ML Interpreter 65

66 Eine Grammatik für ML erstellen Den mittleren Teil des Diagramms (den ML Interpreter) wollen wir herstellen. Dafür müssen wir den Aufbau (Syntax) von ML beschreiben. Wir verwenden eine kontextfreie Grammatik G ML (in BNF). Betrachten wir einfache Beispiele der Sprache und leiten eine Grammatik ab: G0-4 G1-2 A0-1 D1-32 P-16 A-8 P-2 C0-16 C1-8 F0-1 H1-2 P-1 66 Beginnen Sie mit: Song Notes Notes ? Beginnen Sie mit: Song Notes Notes ?

67 Eine Grammatik für ML erstellen 67

68 Eine Grammatik für ML erstellen 68

69 Eine Grammatik für ML erstellen 69

70 Einen Interpreter für ML entwickeln Prinzipell können wir sagen, dass ein Interpreter sehr ähnlich wie ein Compiler arbeitet. Er erstellt nur keinen Zielcode. Wir werden deshalb im Folgenden einen Compiler herstellen, denn wir als Interpreter verwenden wollen. 70

71 Wie funktioniert ein Interpreter ? 71 Für einen Interpreter wollen wir keine Ausgabe wir wollen direkt Befehle ausführen.

72 Einen Interpreter für ML entwickeln 72 Wir müssen den Scanner und Parser beschreiben wie diese arbeiten sollen. Wir beginnen mit der Scannerdefinition. Wir definieren Tokenklassen mit Expressions (Pattern – RegExp.) Einfachste Lösung: Für jedes Terminal in G ML verwenden wir genau eine Tokenklasse. Komplexe Pattern erleichtern aber die Arbeit des Parsers später erheblich. wir versuchen dem Scanner auch Arbeit zu geben

73 Einen Interpreter für ML entwickeln 73 KeyName C|D|E|F|G|A|H Octave 0|1 Duration 1|2|4|8|16|32 duration values (full, half, ¼, …) all keynames allowed octaves Token- klassen Liste 1 1

74 Einen Interpreter für ML entwickeln Wir müssen dafür sorgen, dass sich Tokenklassen nicht überlappen. In echten Programmier- sprachen ist das aber häufig der Fall: Keyword: begin Identifier: [a-z]+ Um dieses Problem zu lösen ist die Reihenfolge der Tokenklassen wichtig! 74 KeyName C|D|E|F|G|A|H Token0 0 Token1 1 Token2_32 2|4|8|16|32 Minus \- Pause P

75 Einen Interpreter für ML entwickeln 75 Wir können eine vereinfachte Grammatik G ML unter Verwendung der Token erstellen: Wir haben 6 Tokenklassen: KeyName, Token0, Token1, Token2_32, P und -

76 Einen Interpreter für ML entwickeln 76 Wir können die RegExp. der Tokenklassen auch wieder durch endliche Automaten darstellen: Token2_32 2|4|8|16|32 KeyName C|D|E|F|G|A|H

77 Einen Interpreter für ML entwickeln 77

78 Einen Interpreter für ML entwickeln 78 Wir bennen die Tokenklassen sinnvoll um.

79 Einen Interpreter für ML entwickeln 79 Die regulären Ausdrücke müssen eingetragen werden.

80 Einen Interpreter für ML entwickeln 80

81 Einen Interpreter für ML entwickeln Wir können jetzt einen Compiler erstellen lassen (Scanner + Parser) und auf ein Programm in ML anwenden: Wir wollen aber Töne abspielen es fehlt also noch etwas 81

82 Einen Interpreter für ML entwickeln Für jede Regel müssen wir ein S-Attribut erstellen. Erinnerung: S-Attribute sind kleine Quelltextfragmente die bei der Anwendung einer Regel ausgeführt werden. Jede Regel liefert ihr Ergebnis in $$ zurück indem das Quelltextfragment abgearbeitet wird (wir müssen $$ bei Bedarf einen Wert zuweisen). 82

83 Einen Interpreter für ML entwickeln Wiederholung Platzhalter $1 bis $n: In S-Attributen können wir Platzhalter verwenden, die jeweils für das Ergebnis eines Elements auf der rechten Regelseite stehen. 83 $1 $2 C1 - - Input word: C1-8 C1-4 Input word: C1-8 D1-4 Von einem Token $n ist dies immer das Lexem! Von einem Nichtterminal ist $n immer dessen Ergebnis $$! Von einem Token $n ist dies immer das Lexem! Von einem Nichtterminal ist $n immer dessen Ergebnis $$! $$ = "C1-8" $2 8 8

84 Einen Interpreter für ML entwickeln Wiederholung Platzhalter $1 bis $n: In S-Attributen können wir Platzhalter verwenden, die jeweils für das Ergebnis eines Elements auf der rechten Regelseite stehen. 84 Alle $n und $$ haben den Datentyp String !!! $1 $2 C C 1 1 Input word: C1-8 C1-4 Input word: C1-8 D1-4 $$ = "C1" Von einem Token $n ist dies immer das Lexem! Von einem Nichtterminal ist $n immer dessen Ergebnis $$! Von einem Token $n ist dies immer das Lexem! Von einem Nichtterminal ist $n immer dessen Ergebnis $$! $1 C1

85 Einen Interpreter für ML entwickeln Nun können wir uns den S-Attributen zuwenden für: Was passiert wenn die Regel Note … auftritt? Auf finden wir 3 Hilfsfunktionen um MIDI Noten in Java abzuspielen. Wir müssen den Notennamen wie C0 in die entsprechende MIDI Taste übersetzen und playNote aufrufen. 85 Arbeitsblatt 1

86 Einen Interpreter für ML entwickeln 86

87 Einen Interpreter für ML entwickeln 87 Wir erstellen erneut den Interpreter

88 Das T-Diagramm ausführen 88

89 Einen ML SVG Compiler entwickeln Lösungsschritte: 1) Ein T-Diagramm erstellen 2) Eine Scanner- und Parserdefinition erstellen 3) S-Attribute für die Regeln im Parser aufstellen 4) Den ML SVG Compiler generieren lassen 5) Den Compiler mit Hilfe des T-Diagramms testen 89 Arbeitsblatt 2

90 Ein T-Diagramm für den ML SVG Compiler erstellen 90

91 Einen ML SVG Compiler entwickeln 91

92 Das T-Diagramm ausführen Wir können unseren Compiler dem T- Diagramm zuweisen und dieses ausführen: 92

93 Zusammenfassung 93 C1-8 E1-4 D0-2 … [KeyName, "C"] [Token1, "1"] [Minus, "-"] … [KeyName, "C"] [Token1, "1"] [Minus, "-"] …

94 Turing-Maschine (EINE Definition) 94

95 Turing-Maschine 95 Aufbau und Arbeitsweise: TM-Modell TM als Akzeptor: Start: auf erstem Zeichen des Eingabewortes Stopp: per crash (falls die TM überhaupt anhält)

96 Turing-Maschine 96 Beispiel: Didaktische Kommentierung: ECHTE Beispiele sind problematisch.

97 Turing-Maschine in der Berechenbarkeitstheorie 97

98 Hinweis auf das Buch Wagenknecht, Chr.; Hielscher, M.: Sprachen, Automaten und Compiler: Ein Arbeitsbuch zur theoretischen Informatik. Teubner,


Herunterladen ppt "SBI00643 Fachbezogene Fortbildung für Fachberater im Fach Informatik an Gymnasien Theoretische Informatik (TI) – Theoretische Grundlagen von Programmiersprachen."

Ähnliche Präsentationen


Google-Anzeigen