Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

L3: Lehrer lernen von Lehrern

Ähnliche Präsentationen


Präsentation zum Thema: "L3: Lehrer lernen von Lehrern"—  Präsentation transkript:

1 L3: Lehrer lernen von Lehrern
Ideen aus SINUS mit Begeisterung im Unterricht umsetzen Sibylle Knötzinger Anton-Rauch-Realschule Wertingen

2 Ideen aus SINUS mit Begeisterung im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer Umsetzung im Unterricht: Problemlösestrategien Hausaufgabenfolie Aufgabe zu quadratischen Funktionen Unterrichtseinheit: Dreiecke Unterrichtseinheit: Reelle Zahlen

3 Leitideen aus SINUS bzw. SINUS-Transfer
SINUS: Steigerung der Effizienz des mathematisch-naturwissenschaftlichen Unterrichts Modellversuch 1998 – 2003 SINUS-Transfer ab 2003/2004 Lernen: Aktiver, konstruktiver, kumulativer und zielorientierter Prozeß Kein einseitiger Wissenstransport vom Lehrer zum Schüler Lehrer ermöglichen ihren Schülern eigenständige Zugänge zum Wissen

4 Leitideen aus SINUS bzw. SINUS-Transfer
Leitideen – Unterricht überdenken Unterrichtsstil Anregungen und Hilfe zur Selbsthilfe Variation der Unterrichtsformen und – methoden Arbeiten mit Aufgaben Aufgaben öffnen Lösungsstrategien herausarbeiten Unterschiedliche Lösungswege finden und dann auch gehen Fachliche Inhalte Entdecken und Herausarbeiten inhaltlicher und struktureller Zusammenhänge Begeisterung für Mathematik! Quelle:

5 Ideen aus SINUS mit Begeisterung im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer Umsetzung im Unterricht: Problemlösestrategien (nach einem Vortrag von Prof. Regina Bruder) Hausaufgabenfolie Aufgabe zu quadratischen Funktionen Unterrichtseinheit: Dreiecke Unterrichtseinheit: Reelle Zahlen

6 Problemlösestrategien - Einstieg
Was man alles mit einem Blatt Papier machen kann etwas abdecken sich Luft zufächeln einen Brief schreiben anzünden etwas aufschreiben Blatt Papier einen Flieger basteln etwas ausstopfen ein Geschenk einpacken

7 Problemlösestrategien - Einstieg
Was man alles mit einem Mauerstein machen kann Strategie: Was weiß ich über einen Mauerstein? Welche Eigenschaften hat er? Was kann ich daraus ableiten? etwas beschweren Gewicht etwas versenken Türstopper eine Mauer errichten Form sich draufstellen etwas damit abdecken zermahlen Material zum Wärmen verwenden etwas beschriften

8 Tipps zum Problemlösen
Strategien und Hilfsmittel helfen, eine Aufgabe zu lösen. Strategien: Vorwärtsarbeiten Was ist gegeben? Was weiß ich über das Gegebene? Was kann ich daraus ermitteln? Rückwärtsarbeiten Was ist gesucht? Was weiß ich über das Gesuchte? Was benötige ich, um das Gesuchte zu ermitteln? Heuristische Hilfsmittel Informative Figur Tabelle Gleichung

9 Problemlösestrategien - Vorwärtsarbeiten
Quelle:

10 Problemlösestrategien - Rückwärtsarbeiten
Ein Mann geht Äpfel pflücken. Um in die Stadt zu kommen, muss er 7 Tore passieren. An jedem Tor steht eine Wächterin und verlangt von ihm die Hälfte seiner Äpfel und einen Apfel mehr. Am Schluss bleibt dem Mann nur ein Apfel übrig. Wie viele hatte er am Anfang? Quelle:

11 Problemlösestrategien – Informative Figur
Quelle: Fortbildung SINUS Transfer, Autor unbekannt

12 Problemlösestrategien – Vorwärtsaufgabe
Der Lügendetektiv Mit einem so flauen Gefühl, wie er sie nie zuvor verspürt hatte, betrat der Anthropologe Abercrombie die Insel der Ritter und Schurken. Er wusste, dass diese Insel von höchst erstaunlichen Menschen bevölkert wurde: Die Ritter machten immer nur wahre Aussagen, die Schurken stets falsche. „Wie“, fragte sich Abercrombie, „kann ich jemals etwas über diese Insel erfahren, wenn ich nicht weiß, wer lügt und wer die Wahrheit sagt? Abercrombie wusste, dass er, bevor er überhaupt etwas in Erfahrung bringen konnte, einen Freund finden musste, jemanden, dessen Aussagen er immer vertrauen konnte. Deshalb dachte er sich, als er die ersten drei Inselbewohner traf: „Das ist die Chance, einen Ritter für mich zu finden!“ Die drei Bewohner hießen Arthur, Bernhard und Charles. Abercrombie fragte zunächst Arthur: „Sind Bernard und Charles beide Ritter?“ Arthur antwortete: „Ja!“ Arthur fragte dann: „Ist Bernard ein Ritter?“ Zu seiner großen Überraschung antwortete Arthur nun mit „Nein“. Ist Charles ein Ritter oder ein Schurke? Lösung: Charles ist ein Schurke Quelle:

13 Problemlösestrategien – Vorwärtsaufgabe

14 Problemlösestrategien – Vorwärtsaufgabe
Ein Windsack zeigt genau nach Nordosten. Er macht zuerst eine Halbdrehung, dann dreht er sich um 45° weiter, dann dreht er sich nochmals um 75% einer Volldrehung. Anschließend dreht er sich zuerst um 270°, dann noch um 180°. Aus welcher Richtung kommt jetzt der Wind? (Hinweis: Es gilt auch hier die mathematische Drehrichtung) Lösung: Ausgangssituation: NO SW S W   N S Da der Windsack nach Süden zeigt, weht ein Wind aus Norden.

15 Problemlösestrategien – Rückwärtsaufgabe
Der Hund Waldi ging mit seinem Herrchen einkaufen. Auf dem Weg nach Hause war er so hungrig, dass er an jeder der sechs Straßenecken die Hälfte seiner Hundekekse und einen mehr aufgefressen hat. Zuhause war nur noch ein Keks übrig. Wie viele Kekse hatte sein Herrchen gekauft?    Lösung: Zuhause: 1 Keks übrig An der 6. Straßenecke waren zunächst noch 4 Kekse in der Packung. An der 5. Straßenecke waren zunächst noch 10 Kekse in der Packung. An der 4. Straßenecke waren zunächst noch 22 Kekse in der Packung. An der 3. Straßenecke: zunächst noch 46 Kekse An der 2. Straßenecke: zunächst noch 94 Kekse An der 1.Straßenecke: zunächst noch 190 Kekse Antwort: Es waren 190 Kekse in der Packung. Quelle: Fortbildung SINUS Transfer, Autor unbekannt

16 Problemlösestrategien – Rückwärtsaufgabe
Martina nimmt die Hälfte der Gummibärchen aus einer Tüte und behält sie für sich. Dann gibt sie Max zwei Drittel der Gummibärchen, die noch in der Tüte waren. Jetzt sind in der Tüte noch sechs Gummibärchen. Wie viele Gummibärchen waren am Anfang in der Tüte. Lösung: Max erhält 12 Gummibärchen. Martina hatte anfangs 36 Gummibärchen in ihrer Tüte.

17 Problemlösestrategien – Rückwärtsaufgabe
Lösung: Der Junge wiegt gleich viel wie sechs Katzen oder drei Säcke. Quelle: Aufgaben Probeunterricht, Autor unbekannt

18 Problemlösestrategien – Gleichung
Aufgabe: In jeder von fünf Kisten befindet sich genau die gleiche Anzahl von Aprikosen. Entnimmt man jeder Kiste 60 Aprikosen, bleiben in den Kisten insgesamt soviel Aprikosen übrig, wie vorher in zwei Kisten waren. Wie viele Aprikosen waren vorher insgesamt in den Kisten? Lösung: Mit Hilfe einer Gleichung: 5(x – 60) = 2x In jeder Kiste waren vorher 100 Aprikosen, also insgesamt waren 500 Aprikosen in den Kisten. Quelle: Fortbildung SINUS Transfer, Autor unbekannt

19 Problemlösestrategien – Gleichung
Aufgabe: Lukas spielt in einer Fußballmannschaft. Nach der Tabellenrunde verkündet der Trainer den Torestand: Lukas hat viermal so viele Tore geschossen wie Michael. Özdem hat drei Tore mehr erzielt als Michael. Insgesamt haben die drei Torschützen für ihre Mannschaft 33 Tore geschossen. Lösung: Mit Hilfe einer Gleichung: x + 4x + (x + 3) = 33 Michael hat fünf Tore geschossen, Lukas zwanzig und Özdem sieben.

20 Problemlösestrategien – Informative Figur
Aufgabe: Der Koch eines Zeltlager braucht für die Soße, die er kochen möchte, genau 6 Liter Wasser. Er hat außer seinem großen Topf für die Soße nur einen 4-Liter-Eimer und einen 9-Liter-Eimer ohne Markierungen zur Verfügung. Wie muss er vorgehen, damit er genau 6 Liter Wasser abmessen kann? Lösung: Der 9-l-Eimer wird befüllt. Anschließend wird mit dieser Menge nacheinander zweimal der 4-L-Eimer befüllt. Es bleibt 1 l im 9-l-Eimer zurück, dieser kann in den Topf gegossen werden. Anschließend wird der 9-l-Eimer nochmal befüllt. Das Wasser wird dann in den 4-l-Eimer gegossen. Zurück bleiben 5 Liter, die dann in den Topf gegossen werden können. 9l 4l 4l 1l 9l 4l 5l

21 Ideen aus SINUS mit Begeisterung im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer Umsetzung im Unterricht: Problemlösestrategien Hausaufgabenfolie Aufgabe zu quadratischen Funktionen Unterrichtseinheit: Dreiecke Unterrichtseinheit: Reelle Zahlen

22 Ideen aus SINUS mit Begeisterung im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer Umsetzung im Unterricht: Problemlösestrategien Hausaufgabenfolie Aufgabe zu quadratischen Funktionen Unterrichtseinheit: Dreiecke Unterrichtseinheit: Reelle Zahlen

23 Aufgabe zu quadratischen Funktionen
Einstieg: Video „Jahrhundertsprung“ von Bob Beamon bei den Olympischen Spielen 1968 in Mexiko City Einstieg: Video „Jahrhundertsprung“ von Bob Beamon bei den Olympischen Spielen 1968 in Mexiko City

24 Aufgabe zu quadratischen Funktionen
Weltbestenliste Weitsprung Männer Alle Springer mit einer Leistung von 8,66 Metern oder weiter. In Klammern: Wind in m/s. A: Weite wurde unter Höhenbedingungen erzielt. Letzte Veränderung: 5. Oktober 2009 8,95 m (0,3) Mike Powell, USA, Tokio, 30. August 1991 8,90 m A (2,0) Bob Beamon, USA, Mexiko-Stadt, 18. Oktober 1968 8,87 m (- 0,2) Carl Lewis, USA, Tokio, 30. August 1991 8,86 m A (1,9) Robert Emmijan, URS, Zachkadsor, Armenien, 22. Mai 1987 8,74 m (1,4) Larry Myricks, USA, Indianapolis, 18. Juli 1988 8,74 m A (2,0) Erick Walder, USA, El Paso, 2. April 1994 8,74 m (- 1,2) Dwight Phillips, USA, Eugene, 7. Juni 2009 8,73 m (1,2) Irving Saladino, PAN, Hengelo, 24. Mai 2008 8,71 m (1,9) Iván Pedroso, CUB, Salamanca, 18. Juli 1995 8,66 m (1,6) Louis Tsatoumas, GRE, Kalamata, 2. Juni 2007 Quelle:

25 Aufgabe zu quadratischen Funktionen
Bob Beamon sprang bei seinem Weltrekord bei den Olympischen Spielen 1968 in Mexiko-City 8,90 m weit. Sein Körperschwerpunkt legte dabei in etwa die Bahn einer Parabel zurück, die angenähert durch die Gleichung y = -0,0571x2 + 0,3838x + 1,14 beschrieben wird (y gibt die jeweilige Höhe des Körperschwerpunktes über der Sprunggrube (in m) und x die horizontale Entfernung von der Ausgangslage beim Absprung (in m) an. Könnte Bob Beamon mit diesem Weltrekord einen VW Golf überspringen? Quelle:

26 Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 1):

27 Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 2):

28 Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 3):

29 Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 4): Laufsprung

30 Ideen aus SINUS mit Begeisterung im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer Umsetzung im Unterricht: Problemlösestrategien Hausaufgabenfolie Aufgabe zu quadratischen Funktionen Unterrichtseinheit: Dreiecke Unterrichtseinheit: Reelle Zahlen

31 8. Klasse: Dreiecke Erarbeitung der Seiten-Winkel-Beziehung und der Dreiecksungleichung
Auftrag 1: Schreibe alles auf, was du über Seiten, Winkel (auch Außenwinkel) ... von Dreiecken weißt. In normalen Dreiecken sind die drei Seiten verschieden lang und die drei Winkel verschieden groß. In besonderen Dreiecken sind manche Seiten oder Winkel gleich, es treten 90°- Winkel auf oder die Dreiecke sind symmetrisch. Zeichne besondere Dreiecke!  3. Zeichne 4 unterschiedliche Dreiecke und miss die Seiten und Winkel deiner Dreiecke. Trage die Messergebnisse in unten stehende Tabelle ein! Überlege dir Maße von 2 Dreiecken, die die Dreiecksungleichung nicht erfüllen und versuche, diese Dreiecke zu zeichnen! Überlege dir ebenso Maße von 2 Dreiecken, die die Seite-Winkel-Beziehung nicht erfüllen und versuche diese Dreiecke zu zeichnen! Quelle: Idee von Franz Anneser, Herzog-Tassilo-Realschule, Dingolfing

32 8. Klasse: Dreiecke Erarbeitung der Kongruenzsätze
Auftrag 2: Landesvermessung Nach dem Vorbild des holländischen Mathematikers Snellius (1580 – 1626) wird das zu vermessende Gebiet mit einem Netz von Dreiecken überzogen, deren Eckpunkte markante, weithin sichtbaren Punkte sind. Der berühmte Mathematiker Gauß führte die Vermessung des Königreiches Hannover durch. Unten stehendes Bild zeigt einen Ausschnitt aus dem Netz der Vermessung Bayerns. Übertrage das Dreieck Peissenberg – Wendelstein – München in Dein Heft. Zeichne im Maßstab 2 : 1. Markiere auf unkariertem Papier 3 Punkte und verbinde sie. Jetzt sollst Du das Dreieck vermessen und ein identisches Abbild dieses Dreieckes herstellen.  Welche Messungen sind unbedingt durchzuführen? Versuche dieses identische Dreieck mit möglichst wenig Messaufwand herzustellen! Finde unterschiedliche Methoden!  3. Gestalte farbige Muster aus Dreiecken. Verwende nur gleiche Dreiecke! Aus: Mathematik für Realschulen, Diesterweg, S.105 Quelle: Idee von Franz Anneser, Herzog-Tassilo-Realschule, Dingolfing

33 Ideen aus SINUS mit Begeisterung im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer Umsetzung im Unterricht: Problemlösestrategien Hausaufgabenfolie Aufgabe zu quadratischen Funktionen Unterrichtseinheit: Dreiecke Unterrichtseinheit: Reelle Zahlen

34 Reelle Zahlen Dialog zwischen Sokrates und dem Sklaven Menon
In seinem Dialog „Menon“ lässt der Philosoph Platon als Lehrer den berühmten Sokrates und als seinen Schüler den Sklaven Menon auftreten. Versetze dich in die Lage des Sklaven Menon und versuche, das Problem zu lösen. Zeichne den Gedankengang mit einer Skizze nach. Kommst du alleine nicht weiter, darfst du dir Hilfekarten holen (Hilfekarte 1, Hilfekarte 2) Bild: Sokrates Sokrates: (zum Sklaven) Sage, siehst du dieser viereckigen Fläche an, dass sie ein Quadrat ist? Menon: Ja. Sokrates : Nehmen wir einmal an, die eine Seite ist zwei Fuß lang und die andere Seite ebenfalls. Wie viel Quadratfuß wäre der Flächeninhalt? Menon: Vier, mein Sokrates. Sokrates: Ließe sich nun nicht ein zweites, doppelt so großes Quadrat herstellen? Sokrates: Wie viel Quadratfuß wird es also enthalten? Menon: Acht. Sokrates: Wohlan denn, hier haben wir unser Problem: Versuche mir dieses Quadrat zu zeichnen. Die Seite unseres Quadrates hier ist zwei Fuß lang; wie lang wird also nun die Seite des doppelten sein? Menon: Offenbar doppelt so lang. 2 2 Quelle:

35 Reelle Zahlen Sokrates: Wie groß ist der Flächeninhalt dieses Quadrats? Nicht viermal so groß? Menon: Du hast Recht. Sokrates: Denn viermal vier ist sechzehn. Nicht wahr? Menon: Ja. Sokrates: Es muss also doch die Seite des Quadrats mit Flächeninhalt 8 Quadratfuß größer sein als zwei Fuß und kleiner aber als vier Fuß? Menon: Notwendigerweise. Sokrates: Versuche also zu sagen, wie lang sie nach deiner Meinung sein muss. Menon: Drei Fuß lang. Sokrates: Wenn es nun auf dieser Seite drei Fuß lang ist und auf dieser auch, so muss die ganze Fläche doch neun Quadratfuß sein. Menon: Offenbar. Sokrates: Also auch dieses Quadrat ist nicht das gesuchte. Menon: Aber beim Zeus, mein Sokrates, ich weiß es nicht. Sokrates: Nehmen wir noch einmal unserer Quadrat mit Flächeninhalt sechzehn Quadratfuß. Dieses Quadrat können wir in vier gleich große Quadrate mit dem Flächeninhalt vier Quadratfuß einteilen. ... Versuche vorerst das Problem selbständig zu lösen. Benutze Hilfekarte 1 erst, wenn du nicht mehr weiter weißt. Quelle:

36 Reelle Zahlen Hilfekarte 1:
Sokrates: Das gesuchte Quadrat soll aber nur den Flächeninhalt acht Quadratfuß haben. Menon: Ja, gewiss. Sokrates: Lässt sich nicht jedes der vier Quadrate in zwei gleichgroße Hälften teilen? Menon: Ja. Sokrates: Es ließen sich doch vier gleich lange Diagonalen so ziehen, dass sie ihrerseits wieder ein Quadrat ergeben? Menon: So ist es. Sokrates: Überlege also: Wie groß ist der Flächeninhalt dieses Quadrat? ... Stelle vorerst eigene Überlegungen an. Danach darfst du Hilfekarte heranziehen. Quelle:

37 Reelle Zahlen Hilfekarte 2: Menon: Ich kann nicht darauf kommen.
Sokrates: Jedes Quadrat mit Flächeninhalt vier Quadratfuß wird durch die Diagonale halbiert. Menon: Gewiss. Sokrates: Wie viele solcher Hälften sind nun in dem neuen Quadrat enthalten? Menon: Vier. Sokrates: Wie groß ist dann der Flächeninhalt des neuen Quadrats? Menon: Acht Quadratfuß Sokrates: Ist dies aber der Fall, so muss die Diagonale die Seite des gesuchten Quadrats bilden. Menon: Ohne Zweifel, Sokrates! Quelle:

38 Reelle Zahlen Arbeitsblatt:

39 Reelle Zahlen Quelle: Fortbildung SINUS

40 Reelle Zahlen Quelle: Fortbildung SINUS

41 Reelle Zahlen Quelle: Fortbildung SINUS


Herunterladen ppt "L3: Lehrer lernen von Lehrern"

Ähnliche Präsentationen


Google-Anzeigen