Perspektiven der experimentellen Hochenergiephysik - Teil 1

Slides:



Advertisements
Ähnliche Präsentationen
Die Frage nach dem Leben, dem Universum
Advertisements

Michael Hammer: Das Standardmodell der Teilchenphysik
Auf den Spuren der Elementarteilchen
Warum benötigen wir immer grössere Beschleuniger (wie den Large Hadron Collider LHC bei CERN/Genf)? Amand Fäßler, Tübingen.
Amand Fäßler, Tübingen RC Winterthur 14. Juli 2010
Konzept der Wechselwirkungen
Wechselwirkung und Reichweite von Strahlung
Günter Quast Karlsruhe, 4. Oktober 2004 Institut für experimentelle Kernphysik 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger.
“Physik am Samstagmorgen”
Physik jenseits des Standardmodells
18 Jan 2008 Kosmologie, WS07/08, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung 2. Neutrino Oszillationen-> Neutrino Massen.
Gliederung Was ist SUSY Motivation für SUSY
Name der Kraft Rel. Stärke Reich- weite Teilchen auf die die Kraft wirkt Feld- quanten Typische Lebens- dauer starke 1 Quarks 8 Gluonen Hadronen Mesonen.
Kilian Leßmeier Universität Bielefeld
Kap. 1: Einführung Übersicht Hadron-Kollider
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 1, Intermezzo: Beispiele von hadronischen Kollisions- Experimenten D0 am Tevatron.
…Planung und Bau eines Detektors für die Teilchenphysik Unsichtbares sichtbar machen... R.-D. Heuer, Univ. Hamburg Heidelberg,
Entdeckung des Myon-Neutrinos
Quark- und Gluonstruktur von Hadronen
G. Flügge, T. Hebbeker, K.Hoepfner, J. Mnich, W. Wallraff
Elementarteilchenphysik/Astroteilchenphysik Seminarthemen Organisation
Moderne Methoden der Teilchen- und Astroteilchenphysik
Der Aufbau eines Atomkerns
Ties Behnke: TESLA - ein Weg zur Weltformel? 1 Tag der Wissenschaft - Berlin: TESLA Licht der Zukunft Teilchenphysik bei TESLA ein Weg zur.
Erdgebundene Beschleuniger
Entdeckung des Myons und des Pions in der kosmischen Strahlung
Elementarteilchen aus dem Urknall
Experimentelle Methoden der Teilchenphysik oder Rundgang durch das CMS-Experiment Thomas Schörner-Sadenius, Georg Steinbrück Wir beschäftigen uns in dieser.
Kern- und Teilchenphysik 2
Seminarvortrag von Florian Senger
- Die Elementarteilchen
Kosmologie und Teilchenphysik
Kern- und Teilchenphysik
Masterclasses Hands-on Particle Physics
Programm – 09.50: Begrüßung und Umfrage – 11.30: Vorträge
Meilensteine der Teilchenphysik
Meilensteine der Teilchenphysik
Das Higgs-Teilchen - Der letzte Baustein im Standard Modell
1. Physik der Elementarteilchen.
3. Was bringt die Zukunft ? Was ist spontane Symmetriebrechung?
Überblick (1) Was sind Elementarteilchen ? Die ersten Teilchen
Das magnetische Moment der Leptonen
Reise in die subatomare Welt
Beschleuniger Teilchen umgeben uns überall
Perspektiven der experimentellen Hochenergiephysik - Teil 1
Perspektiven der experimentellen Hochenergiephysik - Teil 1
Die geheimnisvolle Welt der Elementarteilchen
Perspektiven der experimentellen Hochenergiephysik - Teil Claudia-Elisabeth Wulz Institut für Hochenergiephysik der Österreichischen Akademie.
Besuch im Teilchenzoo Claudia-Elisabeth Wulz Juli 2011
Günther Dissertori CERN , EP-Division Lehrer Seminar Februar 2000
dunkle Materie und der LHC
Galaxiencluster, dunkle Materie und der LHC. Dunkle Materie August 2006: NASA Finds Direct Proof of Dark Matter
European Masterclasses 2007 Teilchenbeschleuniger&Detektoren.
Titel: Elementarteilchen
Teil 7: Offene Fragen der Teilchenphysik
der Elementarteilchen
Galaxien, dunkle Materie und der LHC. Etwas fehlt Wie schnell sich ein Stern in einer Galaxie um das Galaxienzentrum dreht, seine Rotationsgeschwindigkeit,
WYP 2005 European Masterclass Das Standardmodell Standardmodell der Elementarteilchenphysik.
Freitag, 28 September 2007 Prof. G. Dissertori
Wechselwirkungen von Strahlung mit Materie
Teilchenphysik-Quiz Präsentationstitel, Autor.
Der Nachweis des W und Z Bosons
Entdeckung der W/Z-Bosonen
Schwere Eichbosonen Seminarvortrag im Rahmen des F-Praktikums
Standardmodell. 224 Was wissen wir bisher? Nukleonen bestehen aus (3) spin ½ Teilchen mit relativ geringer Masse.
Beschleuniger und Detektoren
Neutrino-Oszillation !
Standardmodell der Elementarteilchenphysik
Teilchenphysik-Quiz Präsentationstitel, Autor.
 Präsentation transkript:

Perspektiven der experimentellen Hochenergiephysik - Teil 1 http://wulz.home.cern.ch/wulz/Vorlesung/Vorlesung1_nov2007.pdf 142.083 Claudia-Elisabeth Wulz Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften c/o CERN/PH, CH-1211 Genf 23 Tel. 0041 22 767 6592, GSM: 0041 76 487 0919 E-mail: Claudia.Wulz@cern.ch http: //home.cern.ch/~wulz Nov. 2007

Literatur Theorie: T. Morii, C.S. Lim, S.N. Mukherjee: The Physics of the Standard Model and Beyond, World Scientific Publishing Co. (2004) W. Majerotto (ed. S. Kraml, erhältlich bei H. Eberl am Institut): Skriptum “Einführung in die Modelle der Elementarteilchenphysik (Wintersemester / Sommersemester)” M. Treichel: Teilchenphysik und Kosmologie, Springer-Verlag (2000) D. Griffiths: Einführung in die Elementarteilchenphysik, Akademieverlag (1996) Allgemein: B.R. Martin, G. Shaw: Particle Physics, J. Wiley and Sons (2nd ed. 1997) D. H. Perkins: Introduction to High Energy Physics, Cambridge U. Press (4th edition, 2000) Detektoren: W. R. Leo: Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag (2nd ed. 1994) Ch. Joram: Particle Detectors, http://joram.web.cern.ch/Joram/lectures.htm

Webseiten Einführungen in die Teilchenphysik: http://www.cpepweb.org/particles.html http://particleadventure.org/particleadventure/index.html http://hepwww.rl.ac.uk/Pub/Phil/ppintro/ppintro.html http://www2.slac.stanford.edu/vvc/Default.htm http://www.teilchen.at Für Physiker/Studenten: http://humanresources.web.cern.ch/HumanResources/external/training/ACAD/acad0.asp http://pdg.lbl.gov/

Elementarteilchenphysik Hochenergiephysik = Elementarteilchenphysik • Frage nach dem Aufbau und Zusammenhalt der Materie Lehre von Teilchen und ihren Wechselwirkungen •

… Planck’sches Wirkungsquantum 1 eV = 1.6 . 10-19 Ws … Energieeinheit Hochenergiephysik Man benötigt umso höhere Energien, je kleiner die zu erforschenden Dimensionen sind. D l @ 1/GeV @ 0.2 . 10-15 m 1/4 der Ausdehnung des Protons Wichtige Einheiten und Größen h _ Dp D l ≥ , DE Dt ≥ Heisenberg'sche Unschärferelation … Planck’sches Wirkungsquantum = h/2p = 6.6 . 10-22 MeVs 1 eV = 1.6 . 10-19 Ws … Energieeinheit Masse des Protons: 938 MeV/c2 = 1.67 . 10-27 kg, Masse des Elektrons: 0.511 MeV/c2 = 9 . 10-31 kg Anmerkung: c bzw. werden oft 1 gesetzt (“natürliche Einheiten”), so daß MeV bzw. GeV Energie, Impuls oder Masse darstellen können.

Die fundamentalen Kräfte

Sie tritt z.B. beim radioaktiven b-Zerfall (z.B. 3H  3He) auf: Teilchen ohne starke Wechselwirkung heißen LEPTONEN (z.B. Elektron, Müon, Neutrino). Die schwache Wechselwirkung wird durch die INTERMEDIÄREN VEKTORBOSONEN (W±, Z) vermittelt. Diese sind fast 100 mal so schwer wie das Proton und wurden 1983/1984 an den Experimenten UA1 und UA2 des CERN SppS-Colliders entdeckt. Carlo Rubbia und Simon van der Meer bekamen für ihre entscheidenden Beiträge den Nobelpreis. 1 2

Nobelpreis 1984 C. Rubbia S. van der Meer “…for their decisive contributions to the large project which led to the discovery of the field particles W and Z, communicators of weak interaction”

Die starke Wechselwirkung Sie hält Atomkerne zusammen. Teilchen, die eine starke Wechselwirkung besitzen, heißen HADRONEN. Sie sind aufgebaut aus QUARKS. Die starke Wechselwirkung kommt durch den Austausch von Teilchen zwischen den Quarks zustande. Diese heißen GLUONEN. Weder Gluonen noch Quarks existieren jedoch als freie Teilchen (“CONFINEMENT”).

»» »» Die starke Wechselwirkung Ü Þ Ü Þ Gluonen und Quarks tragen Farbladung (“COLOR”) QUANTENCHROMODYNAMIK Sichtbare Teilchen sind jedoch farbneutral. Ü u u d Þ Proton u Ü »» u d Þ d d »» u d d u d p + Neutron

Yukawa - Theorie Protonen und Neutronen in Kernen werden durch Feld angezogen. Das Feldquantum muß die Eigenschaften der starken Wechselwirkung repräsentieren, also u.a. relativ schwer aufgrund der kurzen Reichweite der Kernkraft sein. Yukawa postulierte, daß seine Masse bei ca. 300 me liegen sollte. Es wurde Meson genannt (zwischen me und mp). Griffiths S. 17 Teilchen mit kompatibel scheinenden Eigenschaften wurden tatsächlich in der kosmischen Strahlung gefunden. Jedoch stellten sich dann Diskrepanzen bei Massen- und Lebensdauermessungen sowie eine nur schwache WW mit Atomkernen heraus. Was gefunden wurde, waren Müonen.

Pic du Midi - Observatorium +  + +  Marshak, Bethe: Müonen könnten Zerfallsprodukte von schwereren Teilchen sein, die ihrerseits Yukawas Mesonen sein könnten. Tatsächlich wurden die p-Mesonen (Pionen) mit Yukawas Feldquanten identifiziert. Ihre Zerfallsprodukte, die Müonen, haben nichts mit der starken Wechselwirkung zu tun. Sie zerfallen meist vor Erreichen der Erdoberfläche in Elektronen und zwei Neutrinos (da e-Energie nicht konstant ist - 3-Körperzerfall): +  +++m -  -++m - 600 mm m e Martin/Shaw S. 37, Bild S. 39 p Lattes, Powell, Occhialini, Muirhead (1947) Pic du Midi - Observatorium

Geladenes V- Ereignis: 1947 sah es so aus, als ob die größten Probleme der Elementarteilchenphysik mehr oder weniger verstanden wären, bis auf die Rolle des Müons (I. Rabi: “Who ordered that?”). Es kam jedoch die Entdeckung der “Strange Particles” … K+ m+ 3 cm Blei } Rochester, Butler: K0  K+  K+  etc. Anderson et al.: L  Griffiths S. 28, Bild Martin/Shaw S. 41 Geladenes V- Ereignis: K+  m + + nm

Die “Strange Particles” waren insoferne seltsam, als sie in großer Zahl erzeugt werden (Zeitskala typisch 10-23 s), aber relativ langsam zerfallen (Zeitskala 10-10 s). Das bedeutet, daß Produktions- und Zerfalls-mechanismen verschieden sind. Strange Particles werden durch starke Wechselwirkung erzeugt, sie zerfallen aber durch schwache WW. Gell-Mann und Nijishima schrieben jedem Teilchen eine Eigenschaft namens “Strangeness” zu, die in der starken WW erhalten bleibt, in der schwachen aber verletzt ist. Deshalb werden Strange Particles nur paarweise erzeugt, wie z.B. p- + p+  K0 + L Beim Zerfall wird Strangeness verletzt, wie z.B.   p + p- .

Willis Lamb in seiner Nobelpreisrede 1955: Als 1901 zum ersten Mal die Nobelpreise verliehen wurden, wußten die Physiker nur von zwei Objekten, die jetzt “Elementarteilchen” genannt werden: dem Elektron und dem Proton. Eine Flut von anderen “elementaren Teilchen” kam nach 1930 zutage - Neutron, Neutrino, m- Meson, p-Meson, schwerere Mesonen und verschiedene Hyperonen. Ich hörte, wie jemand sagte, daß ein Entdecker eines neuen Elementarteilchens normalerweise mit einem Nobelpreis belohnt wurde, nun aber mit einer Geldstrafe von 10000 $ belegt werden sollte. Ähnliches sagte Enrico Fermi im Zusammenhang mit der Hadronspektroskopie, die sich mit dem im folgenden vorgestellten Quarkmodell ergab: Junger Mann, wenn ich mir die Namen aller dieser Teilchen merken könnte, wäre ich Botaniker geworden.

Das Quarkmodell 1964: Gell-Mann, Zweig Elementare Bausteine der Materie:

Das Quarkmodell

Mesonen, Baryonen Jedes Meson besteht aus 1 Quark und 1 Antiquark. Jedes Baryon besteht aus 3 Quarks.

Mesonenoktett - - K0 (ds) K+ (us) p - (du) p0, h (uu,dd,ss) K- (su) - Gell-Mann, Ne’eman (1961) p + (ud) p0: (uu-dd)/√2 h: (uu+dd-2ss)/√6 h’: (uu+dd+ss)/√3 h’: 3  3 = 1  8 - K0 (sd) Mesonenoktett

Baryonenoktett n (udd) p (uud) S0 (uds) S- (dds) S+ (uus) L (uds) X- (dss) X0 (uss) Baryonenoktett

Baryonendekuplett L- (ddd) L0 (udd) L+ (uud) L++ (uuu) S*0 (uds) S*- (dds) S* (uus) X*- (dss) X*0 (uss) L+ hat gleichen Quarkgehalt wie Proton, aber verschiedenes Energieniveau, analog H-Atom in verschiedenen Anregungs-zuständen. Quarks: Spin 1/2! Pauli-Prinzip -> COLOR (O.W. Greenberg) W- (sss) Baryonendekuplett

Das Omega-Minus Bild Griffiths S. 35 Brookhaven, 1964

[ + Antiteilchen ] x 3 Farben 36 Quarks Glashow, Salam, Weinberg (1978) 3 Familien (Generationen) von Quarks und Leptonen: e ne ( ) m nm t nt + Antiteilchen 12 Leptonen u d ( ) c s t b [ + Antiteilchen ] x 3 Farben 36 Quarks 4 Vermittlerteilchen der elektroschwachen Wechselwirkung: 3 I.V.B. (W±, Z) + 1 Photon (g) 8 Vermittlerteilchen der starken Wechselwirkung: 8 Gluonen (g)

Alle existierenden Daten (außer Neutrinomassen) werden sehr gut durch das Standardmodell beschrieben. Jedoch ist die Frage der Teilchenmassen ungeklärt! Im Standardmodell existiert ein Teilchen, das zum Mechanismus gehört, durch den Teilchen (außer Neutrinos) Massen erhalten - das Higgs-Boson. Bau des Large Hadron Colliders (LHC) ist notwendig! Strahlenergie: 2 x 7 TeV p-p Entdeckung könnte noch am Tevatron gemacht werden, jedoch vermutlich marginal. Am LEP wurden zwar kompatible Ereignisse gefunden, jedoch Signifikanz war nicht hoch genug. Im Rahmen der Supersymmetrie könnte es auch mehrere Higgse sowie supersymmetrische Partner der bekannten Teilchen geben (Squarks, Sleptonen, Gluinos etc.).

Quellen hochenergetischer Teilchen 1950: Einzige Quelle hochenergetischer Teilchen war die Höhenstrahlung (kosmische Strahlung) Entdeckung von Positronen und Pionen. Heute: fast ausschließlich Teilchenbeschleuniger in Verwendung. Vorteil: nur 1 Projektil mit bekannter, wählbarer Energie. Fixed-Target-Experiment: stationäres Target Collider-Experiment: gegenläufige Teilchenstrahlen In beiden Fällen werden erzeugte Teilchen durch ihre Wechselwirkung mit Materie nachgewiesen Detektoren Linearbeschleuniger Speicherring Martin/Shaw S. 49

Teilchenbeschleuniger Elektromagnetische Kräfte werden benützt, um stabile, geladene Teilchen zu beschleunigen. Es wird eine Quelle benötigt, z.B. Glühkathode (erhitzter Draht) oder Ionenquelle. - Linearbeschleuniger (LINACs) - Zirkularbeschleuniger (Zyklotrone, Synchrotrone) Synchrotrone: Ab 1 GeV Energie. “Kreisbahn” durch Anordnung von Dipolmagneten (Ablenkmagneten), Beschleunigung durch Hochfrequenz-kavitäten. Zur Strahlfokussierung werden Quadrupol- bzw. Sextupolmagneten (Fokussiermagneten) verwendet.

Prinzip der Beschleunigung Elektromagnetische Welle von oben gesehen rot +, blau - Elektromagnetische Welle bewegt sich fort und nimmt Teilchen mit Elektromagnetische Welle Positiv geladene Teilchen in der Nähe des Maximums der Welle erfahren die größte Kraft nach vorne; die in der Nähe des Umkehrpunktes die kleinste. Als Folge davon tendieren die Teilchen dazu, sich zusammen mit der Welle fortzubewegen - Stabilität der Umlaufbahn (“Orbit”). RF in Phase mit Teilchen.

Schema eines Synchrotrons

Super-Proton-Synchrotron des CERN

Quadrupolmagnet (HERA/DESY) Sextupolmagnet (LEP/CERN)

LHC-Teststand mit Dipolen Hochfrequenzresonator (TESLA-Prototyp)

Querschnitt eines LHC-Doppeldipols

Schwerpunktsenergie - Laborenergie Schwerpunktssystem (Centre of Mass Frame): p = S pi = 0 ECM = Wc2 W2c4 = E2 - p2c2 W … invariante Masse einer Menge von Teilchen E, p … Gesamtenergie und -impuls z. B. Teilchenstrahl aus Teilchen mit Masse mS, der auf ein Target mit Masse mT trifft und den Impuls pL hat. Das Target ist in Ruhe, somit ist pT = 0. Teilchenenergien im Laborsystem: EL = √mS2 c4 + pL2 c2 ET = mT c2 W2 c4 = (EL + mT c2 )2 - pL2 c2 = mS2 c4 + mT2 c4 + 2 mT c2 EL ECM = √mS2 c4 + mT2 c4 + 2 mT c2 EL

Fixed-Target-Beschleuniger und Collider Fixed -Target-Beschleuniger Speicherring ECM = √mS2 c4 + mT2 c4 + 2mT2 c2 EL ECM = 2 EL ECM ~ √ EL viele Teilchen nur stabile, geladene hohe Luminosität Teilchen, niedrigere Luminosität ECM … Schwerpunktsenergie, EL … Laborenergie pCM = 0 … Schwerpunktsimpuls, mS … Masse des Strahlteilchens, mT … Masse des Targetteilchens Fixed Target: Teil der Energie muß als kinetische Energie der Endzustandsteilchen erscheinen und steht somit nicht für Teilchenproduktion zur Verfügung.

Fixed-Target-Beschleuniger Collider Beschleunigung und Speicherung für gleiche Teilchen mit entgegengesetzter Ladung in ein und demselben Magnetring (Speicherringe). Fixed-Target-Beschleuniger Beschleunigung bis zur Maximalenergie, Extraktion auf ein stationäres Target (fest oder flüssig). Primärstrahlen: stabile geladene Teilchen (z.B. p, e±) Sekundärstrahlen: neutrale oder instabile Teilchen (z.B. p, g, n).

Erzeugung von Sekundärstrahlen Zur Beschleunigung eignen sich nur stabile, geladene Teilchen. Jedoch braucht man auch neutrale (z.B. g) oder instabile Teilchen (z.B. p±). Diese können erzeugt werden, indem man einen Primärstrahl auf ein Metalltarget lenkt. Bei den Reaktionen mit den Kernen des Targets werden neue Teilchen erzeugt, die dann analysiert werden können. Beispiel 1: p+-Strahl p+ p X Y Kollimator elektrostat. u. magnet. Felder monoenergetischer Strahl schweres Target

Erzeugung von Sekundärstrahlen Beispiel 2: n-Strahl p± m± + nm m+ sowie noch nicht zerfallene p± werden in einem langen Absorber absorbiert. Die Neutrinoimpulse hängen von den ursprünglichen Pionimpulsen ab. Es ist jedoch keine weitere Impulsselektion möglich! p± nm langes Vakuumrohr Absorber

p/e - Teilchenbeschleuniger Fixed-Target-Maschine Teilchenart Strahlenergie/GeV KEK, Japan p 12 SLAC, Stanford, Cal. e - 25 PS, CERN, Genf p 28 AGS, Brookhaven, NY p 32 Serpukhov, Rußland p 76 SPS, CERN, Genf p 450 Tevatron, Fermilab, Ill. p 1000 Collider Teilchenart(Strahlenergien/GeV) CESR, Cornell, NY e + (6) e - (6) PEP, Stanford, Cal. e + (15) e - (15) TRISTAN, Japan e + (32) e - (32) SLC, Stanford, Cal. e + (50) e - (50) LEP, CERN, Genf e + (60) e - (60) SppS, CERN, Genf p(450) p(450) Tevatron II, Fermilab, Ill. p(1000) p(1000) HERA, Hamburg (bis 2007) e - (30) p(820) LEP-200, CERN, Genf (bis 2000) e + (100) e - (100) LHC (2008), CERN, Genf p(7000) p(7000)

Synchrotronstrahlung Synchrotronstrahlung pro Umlauf: b = v/c, g = (1-b2)-1/2 … Krümmungsradius der Umlaufbahn q … Ladung des umlaufenden Teilchens e0 = 8.85 pF/m Für b ≈ 1 (v ≈ c) mit E = gmc2 ist DE ~ 1/m4 hoher Energieverlust für Elektronen (bei gleichem Impuls 1013 mal so hoch wie für Protonen!), deshalb haben in der Praxis konventionelle Elektronenbeschleuniger maximal ca. 100 GeV pro Strahl.

Teilchenbeschleuniger Impuls eines geladenen Teilchens im Magnetfeld: p = 0.3 B r p … Impuls in GeV/c r … Krümmungsradius in Metern B … Magnetische Flußdichte in Tesla Konventionelle Elektromagneten: Bmax ≈ 1.5 T Supraleitende Magneten: Bmax ≈ 10 T Aus obiger Formel wird ersichtlich, warum große Radien für große Strahlimpulse erforderlich sind. Die Synchrotron-strahlung spielt ebenfalls eine Rolle. Während der Beschleunigung muß das Magnetfeld synchron mit dem Impuls erhöht werden, da Umlaufbahn konstant bleiben soll.

Luminosität L … Luminosität in cm-2 s-1 , R … Kollisionsrate in s-1 s … Strahl-Strahl-Wirkungsquerschnitt in cm2 R = s L Beispiel Teilchen-Antiteilchen-Speicherring (pp, e+e-): 1 Vakuumröhre bei gleichem magnetischem Führungsfeld. N … Anzahl der Teilchen pro Paket (“bunch”) Bei je 1 Paket gibt es 2 Kollisionspunkte. In jedem Kollisionspunkt (“Interaction Region”) treten Zusammenstöße mit der Frequenz f ≈ c/u auf, wobei u der Umfang des Speicherringes ist. Perkins S. 50

Luminosität N+N- L = f nbunch A Dann ist die Luminosität in einem Kollisionspunkt durch folgende Formel gegeben: nbunch … Anzahl der Pakete, N± … Anzahl der Teilchen pro Paket A … Strahlfläche bei kompletter Überlappung L A Fokussiermagneten (Quadrupole) “low b region” (b ~ Strahlenvelope). Teilchenoszillationen in vertikaler und horizontaler Richtung zur idealen Bahn: Betatronschwingungen. Longitudinale Schwingungen relativ zur Bewegung eines idealen Teilchens (phasengleich zum Hochfrequenzfeld): Synchrotronschwingungen. L = f nbunch N+N- A

Typische Luminositäten für Collider Beschleuniger Teilchen L/cm-2s-1 SLC (Stanford) e+ e- 0.35x1030 LEP (CERN) e+ e- 2x1031 HERA (DESY) e- p 1.6x1031 SppS (CERN) p p 6x1030 Tevatron (Fermilab) p p 2x1032 *) KEKB (Tsukuba) e+ e- 1x1034 PEP II (Stanford) e+ e- 3x1033 LHC (CERN) p p 1x1034 *) mit Main Injector, ohne 2x1031 1033 “TeV33”

Beschleunigerkomplex des CERN LHC/LEP SPS

Beschleunigerkomplex des Fermilab Tevatron Main Injector

Beschleunigerkomplex des Fermilab Tevatron Main Injector

Beschleunigerkomplex des SLAC

Beschleunigerkomplex des SLAC

Beschleunigerkomplex des KEK

Teilchennachweis Erzeugte Teilchen werden nachgewiesen durch: Wechselwirkung mit dem Detektormaterial (Atomkern) Starke Wechselwirkung für Hadronen Schwache Wechselwirkung für Neutrinos Erzeugung neuer Teilchen bei genügend großer Energie Ionisierung von Atomen (geladene Teilchen) Abgabe von elektromagnetischer Strahlung (geladene Teilchen) g -> e+e-

Wechselwirkung mit Atomkernen Kurze Reichweiten. Für Hadronen gilt, daß die starke Wechselwirkung gleich wichtig für geladene und neutrale Teilchen ist. z.B. Wechselwirkung mit einfachstem Kern, dem Proton: Elastische Streuung: z.B. p - + p -> p - + p Inelastische Streuung: z.B. p - + p -> p + + p - + p 0 + n p - + p -> K0 + L

Totaler Wirkungsquerschnitt Wechselwirkung mit Atomkernen Totaler Wirkungsquerschnitt stot = sel + sinel stot = sel + sq + sinel (für größere Kerne) sinel … groß bei hohen Energien; Summe über alle möglichen inelastischen Prozesse, die durch die Erhaltungssätze erlaubt sind. stot ≈ (10…50) mb für p oder n, höher für Kerne (1 mb = 1 millibarn = 10-27 cm2) sq … Wirkungsquerschnitt für quasielastische Streuung (elastische Streuung an Nukleonen) Rückstoß -> Kernabstoßung -> Anregung bzw. Spaltung

stot und sel für p - + p 100 stot s (mb) 10 sel 10-1 1 10 102 103 p (GeV/c) stot = (10 … 50) mb für andere einfallende Hadronen stot ≈ r 2p ≈ 30 mb für r ≈ 10-15 m tot liegt in derselben Größenordnung wie der geometrische Wirkungsquerschnitt. Er variiert nur langsam mit p für Impulse über ca. 3 GeV/c.

Wechselwirkung mit Atomkernen Kollisionslänge Wahrscheinlichkeit (Pc) für eine Hadron-Kern-Wechselwirkung in dünner Schicht mit Dicke dx. Pc = n stot dx (n = rNA/A … Kerne pro Einheitsvolumen) A … Molmasse (g/mol), r … Dichte (g/cm3), NA … Avogadrozahl (6.022 . 1023 / mol) Mittlere freie Weglänge (“Kollisionslänge”): lc = 1/n stot Absorptionslänge (“Interaktionslänge”) la (la ) = 1/n sinel Kollisions- und Absorptionslängen werden auch oft in g/cm2 angegeben: lc’ = A/NA stot = r lc, la’ = A/NA sinel = r la z.B. für Neutronen auf Pb: lc = 10.2 cm, la = 17.1 cm; lc’ = 116.2 g/cm2, la’ = 194 g/cm2

Atomic and Nuclear Properties of Materials Particle Data Group (http: //pdg.lbl.gov) Tabelle gilt für n oder p. Für n ist stot extrem klein (10-47 m2!)

[ ] Ionisation dE DZ 2m c b g d ( ) dx = n ln I - Alle geladenen Teilchen betroffen. Für mittlere Energien (200 GeV max.) dominieren Ionisationsverluste durch Coulombstreuung an Hüllenelektronen. Die Bethe-Bloch-Formel (hier für Teilchen mit Spin 0 und Ladung ±e) gibt den mittleren Energieverlust an: x … zurückgelegte Wegstrecke im Medium me … Elektronmasse Z … Ordnungszahl I … mittleres Ionsationspotential ( I ~ 10 Z eV für Z > 20 ) d(g) … dielektrischer Abschirmfaktor (nur für hochrelativistische Teilchen wichtig) ne … Elektronendichte des Mediums (ne = r NAZ/A) D … 4pa2 2 / me = 5.1.10-25 MeVcm2 (a = e2 / 4pe0 c) dE DZ 2 2m e c b g d ( ) dx = n [ ln I - ] Martin/Shaw S. 57 h _ h _

Ionisationsenergieverlust für p ± und p in Blei Relativistischer Anstieg (logar. Faktor) 20 1/b2 -dE/dx (MeV/cm) 15 Minimalionisierung (bg ≈ 3-4) 0.1 1 10 100 p (GeV/c) -(dE/dx)min ~ q2 Suche nach freien Quarks!

[ ] Strahlungsverluste - dE/dx = E/Xo E = Eo exp(-x/Xo) 1 X » 4Z(Z+1) Geladene Teilchen werden im Kernfeld abgebremst bzw. beschleunigt Abstrahlung von Photonen Energieverlust (Bremsstrahlung). Vor allem wichtig für Elektronen und Positronen. (für relativistische Elektronen mit E >> mc2 / aZ1/3). X0 … Strahlungslänge - mittlere Energie wird um Faktor e reduziert (wichtig bei der Konzeption von elektromagn. Kalorimetern!) - dE/dx = E/Xo E = Eo exp(-x/Xo) 1 X o » [ 4Z(Z+1) r N A ] a [ln(183Z -1/3 )] e 2 m c

Strahlungsverluste Für hohe Energien sind die Strahlungsverluste proportional zu E/m2. Andererseits geht aus der Bethe-Bloch-Formel hervor, daß die Ionisations-verluste nur schwach von der Masse und Energie des Projektils abhängen (bei hohen Energien). Strahlungsverluste dominieren für Elektronen und Positronen. Ec … kritische Energie = Energie, bei der Strahlungsverluste und Ionisationsverluste für Elektronen gleich sind 600 Ec ≈ MeV Z Element Z Xo/cm Ec/MeV H (26 K) 1 1000 340 C 6 18.8 103 Al 13 8.9 47 Fe 26 1.8 24 Pb 82 0.56 7

Wechselwirkung von Photonen mit Materie Photonen haben hohe Wahrscheinlichkeit, von Atomen absorbiert oder gestreut zu werden. Annahme: Monoenergetischer Photonenstrahl mit I Photonen pro Sekunde, der durch ein Material der Dicke x durchgeht. Dann ist der Energieverlust gegeben durch: dI = - I dx/l I = I0 exp (-x/l) l = 1/nsg ... mittlere freie Weglänge vor Absorption oder Streuung (analog Kollisionslänge für Hadronreaktionen) sg … totaler Photon-Wechselwirkungsquerschnitt mit einem Atom n … Kerne pro cm3

Wechselwirkung von Photonen mit Materie Beiträge zu sg: Photoelektrischer Effekt (Absorption durch Atom, Emission eines Elektrons) (~ Z5/Eg) Comptoneffekt (Photonstreuung an Hüllenelektronen) (~ Z/Eg) Paarerzeugung (im Kernfeld oder Hüllenelektronfeld) (~ Z2) 7 1 9 n X o sPaarerzeugung ≈ I = I0 exp ( ) 7 x 9 X0 9 X0/7 … Konversionslänge Bei hohen Energien wird Photonabsorption, genauso wie der Strahlungs- verlust von Elektronen, durch die Strahlungslänge charakterisiert.

Photon-Wechselwirkungsquerschnitte für ein Blei-Atom 102 sg 10 s / b 1 c d 10- 2 b a 10- 4 10- 2 1 102 E / GeV a) Photoeffekt b) Comptonstreuung c) Paarerzeugung im Feld der Hüllenelektronen d) Paarerzeugung im Kernfeld … dominiert bei hohen Energien