Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Beschleuniger und Detektoren

Ähnliche Präsentationen


Präsentation zum Thema: "Beschleuniger und Detektoren"—  Präsentation transkript:

1 Beschleuniger und Detektoren
Johannes P. Wessels Institut f. Kernphysik

2 Geschichte des Universums
4x10E16 s age of universe, 2.7K = 0.23 meV

3 Physik - Suche nach Gemeinsamkeiten
Das Komplexe Das Große Das Kleine 100 Billionen Synapsen 10^14 10^-18 m Attometer 10^21 sterne - 5x10^23 m riesige Komplexität nur 4 Kräfte K.H. Meier

4 Alle Teilchen des Standardmodells
stabil wirklich alle? wichtige Symmetrie: zu jedem Teilchen gibt es Antiteilchen K.H. Meier

5 Die 4 Kräfte - was die Welt im Innersten zusammenhält
Unsere Welt fallende Äpfel, Planetenbahnen Stärke: 10-39 Reichweite: ∞ Graviton Fernsehen, Magnete chemische Bindung Särke: 1/137 Reichweite: ∞ Photon Gravitation Elektromagnetismus Kernstabilität, -Zerfall, Neutrinos Stärke: 10-5 Reichweite: m W,Z-Bosonen Kernstabilität, Quarkeinschluss Stärke: 1 Reichweite: m Gluon starke Kraft schwache Kraft Die Welt der Kerne

6 Ansichten bei 10-2 m

7 Ansichten bei 10-3 m

8 Ansichten bei 10-5 m

9 mit “normalem” Licht nicht sichtbar
Ansichten bei 10-7 m mit “normalem” Licht nicht sichtbar

10 mit speziellen “Lichtquellen” kann man Moleküle sichtbar machen
Ansichten bei 10-8 m mit speziellen “Lichtquellen” kann man Moleküle sichtbar machen

11 Atome, die im wesentlichen “leer” sind
Ansichten bei m Atome, die im wesentlichen “leer” sind

12 Ansichten bei m im Inneren bestehen die Atome aus den Atomkernen, die beinahe die gesamte Masse in Form von Neutronen und Protonen tragen

13 Ansichten bei m Neutronen und Protonen bestehen ihrerseits aus Quarks die von Gluonen zusammengehalten werden. Quarks sind wahrscheinlich punktförmig und NIE allein.

14 Stark gebundene Materie
Alle stark gebundenen Objekte sind nach außen farbneutral. Sind also entweder Baryonen aus 3 Quarks oder Mesonen aus einem Quark und einem Antiquark. d u u u d Confinement: Quarks kommen in der Natur nicht frei vor. Pion +

15 Was heißt schon Sehen? jpw, Physikertagung

16 Sehen Sehen mit den Augen über Lichtstreuung
“Sehen” kleinerer Strukturen über Teilchenstreuung  = nm  = h/p Hochschultag 2008

17 Beschleuniger - das Prinzip
Ladung wird im elektrischen Feld beschleuingt: E = q•U Für den LHC würde man 2 mal 7000 Milliarden Batterien benötigen

18 Der einfachste Linearbeschleuniger

19 Van de Graaf Beschleuniger
Hahn-Meitner-Institut, Berlin

20 Tandem Van de Graaf Beschleuniger
relativ-kritisch.net mpi-hd.mpg.de

21 Kaskadenschaltung

22 Cockcroft Walton http://www.isis.rl.ac.uk/accelerator
1928: Tunneleffekt 1932: Erste Kernre- aktion

23 Widerøe – Driftröhrenbeschleuniger

24 Zyklotron Das erste Zyklotron (1929, Ernest Lawrence): Durchmesser: 9 cm, Protonenergie: 80 keV Kosten: etwa 100 $

25 1932 – 28cm bringen Protonen auf 1.2 MeV
Zyklotron 1932 – 28cm bringen Protonen auf 1.2 MeV

26 Zyklotronlabor (LBNL)
Lawrence, Seaborg, Oppenheimer

27 TRIUMF Zyklotron (500 MeV p)
„Isochrones“ Sektor-Zyklotron TRIUMF Zyklotron (500 MeV p)

28 Zyklotrons von der Stange
Anwendungen: Erzeugung von Radioisotopen z.B. für PET

29 Synchrotron Prinzip

30 Large Hadron Collider LHC am CERN Alice LHC 7000 GeV c – 10 km/h
Tevatron 980 GeV c – 495 km/h RHIC 250 GeV c – 7602 km/h Geiger / Marsden 4 MeV 5% c

31 Der LHC und seine Magnete
Proton-Proton Kollisionen bei E = GeV 800 Millionen/Sekunde Gold-Gold Kollisionen bei E= GeV 10 Tausend/Sekunde Größter “Kühlschrank” der Welt (1.8 K, l suprafluides Helium) 27 km mit 1296 Dipolmagneten (8T) 100 m unter der Erde

32 Der Large Hadron Collider (LHC)

33 E=mc2 at work Pb Pb

34 Blasenkammer Erster Detektor, mit dem sich gezielt komplizierte Vorgänge sichtbar machen lassen.
jpw, Physikertagung

35 jpw, Physikertagung

36 Impuls = Masse * Geschwindigkeit
Prinzip der Impulsmessung Impuls = Masse * Geschwindigkeit Ablenkung senkrecht zum Magnetfeld (Lorentzkraft) Stärke der Krümmung > Impuls Richtung der Krümmung > Ladung Rückführung der Impulsmessung auf eine Ortsmessung Häufig Detektoren im Magnetfeld (nicht notwendig)

37 Teilchenidentifikation durch Wechselwirkung von Strahlung mit Materie
Art der Strahlung g-Strahlung Elektronen Geladene Teilchen Neutrale Teilchen Wechselwirkung - Niedrige Energien - Foto-, Comptoneffekt, Paarbildung Ionisation, Bremsstrahlung Ionisation Kernwechsel-wirkung Wirkung der Materie Schwächung der Intensität Verringerung der Energie Absorption und Bremsung durch elas-tische Stöße - Hohe Energien - Paarbildung, Bremsstrahlung → Elektromagnetische Schauer Teilchenerzeugung (p-Mesonen) → Hadronische Schauer Ziel: Bestimmung des 4er-Impulses (E,p)

38 Bethe-Bloch-Formel: Energieverlust geladener Teilchen in Materie
x in g/cm2

39 Gasdetektoren

40 Weiterentwicklung von Gasdetektoren

41 Zeit-Projektionskammer (TPC)

42 Kombination von Energieverlust und Impulsmessung

43 Teilchenidentifikation durch Wechselwirkung von Strahlung mit Materie
Art der Strahlung g-Strahlung Elektronen Geladene Teilchen Neutrale Teilchen Wechselwirkung - Niedrige Energien - Foto-, Comptoneffekt, Paarbildung Ionisation, Bremsstrahlung Ionisation Kernwechsel-wirkung Wirkung der Materie Schwächung der Intensität Verringerung der Energie Absorption und Bremsung durch elas-tische Stöße - Hohe Energien - Paarbildung, Bremsstrahlung → Elektromagnetische Schauer Teilchenerzeugung (p-Mesonen) → Hadronische Schauer Ziel: Bestimmung des 4er-Impulses (E,p)

44 Wechselwirkung von Photonen mit Materie (I)
Fotoeffekt Comptoneffekt Paarbildung Absorption eines Photons Streuung eines Photons am quasi-freien Elektron Erzeugung eines Elektron-Positron-Paares in Gegenwart eines Stoßpartners Abhängigkeit des Wirkungsquerschnitts von der Photonenenergie und von der Kernladungszahl Z Dominiert bei niedrigen Energien Trägt bei allen Energien bei Dominiert bei hohen Energien

45 Wechselwirkung von Photonen mit Materie (II)
Wichtige Prozesse: Foto-Effekt Compton-Effekt Paarbildung Mittlere freie Weglänge lPaar für Paarbildung: (Ähnlichkeit zur Elektron-Bremsstrahlung) Wird nur Paarbildung betrachtet: Also: Paarbildungswahrscheinlichkeit p innerhalb einer Strahlungslänge ist p = 1-exp(-7/9) = 54%

46 Elektromagnetische Schauer
elektromagnetischer Schauer: 1 X0 2 X0 3 X0 4 X0

47 Elektromagnetischer Schauer in Nebelkammer

48 Sandwich-Kalorimeter
Homogene Kalorimeter Szintillierende Kristalle NaJ(Tl) BGO Cerenkov-Detektoren Bleiglas Sandwich-Kalorimeter Abwechselnde Schichten aus Absorbermaterial (→hohes Z, z.B. Blei) und Szintillatoren Bleiglas-Modul Absorber Szintillator Wellenlängen- schieber Sandwich-Kalorimeter

49 Beispiel eines komplexen Detektorsystems in der Teilchenphysik: CMS
Typischer Aufbau (von innen nach außen): Spurdetektoren  elektromagn. Kalorimeter  hadronisches Kalorimeter  m-Detektoren

50 Invariante Masse Euklidischer (3er) Vektor 4er-Vektor
z.B. Ort und Impuls z.B. Energie-Impuls Betrags-Quadrat Betrags-Quadrat des Bezugssystems. Invariant unter Transformation (Drehung und Translation) sich die Teilchenmasse rekonstruieren.

51 Collider-Detektoren - kennse einen kennse alle
Central Barrel 2 p tracking & PID Dh ≈ ± 1 Muon Spectrometer 2.5 < h < 4 Detector: Size: 16 x16 x 26 m Weight: 10,000 t Collaboration: > 1300 Members > 130 Institutes > 35 countries TRD, PHOS partially installed, rest fully installed and operational


Herunterladen ppt "Beschleuniger und Detektoren"

Ähnliche Präsentationen


Google-Anzeigen