Perspektiven der experimentellen Hochenergiephysik - Teil 1

Slides:



Advertisements
Ähnliche Präsentationen
Die Frage nach dem Leben, dem Universum
Advertisements

Michael Hammer: Das Standardmodell der Teilchenphysik
Auf den Spuren der Elementarteilchen
Warum benötigen wir immer grössere Beschleuniger (wie den Large Hadron Collider LHC bei CERN/Genf)? Amand Fäßler, Tübingen.
Amand Fäßler, Tübingen RC Winterthur 14. Juli 2010
Konzept der Wechselwirkungen
Wechselwirkung und Reichweite von Strahlung
Günter Quast Karlsruhe, 4. Oktober 2004 Institut für experimentelle Kernphysik 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger.
“Physik am Samstagmorgen”
Die Entdeckung des Gluons Ulrich Scheu. Quelle:
Physik jenseits des Standardmodells
Gliederung Was ist SUSY Motivation für SUSY
-Der Large Hadron Collider LHC -
Name der Kraft Rel. Stärke Reich- weite Teilchen auf die die Kraft wirkt Feld- quanten Typische Lebens- dauer starke 1 Quarks 8 Gluonen Hadronen Mesonen.
Kilian Leßmeier Universität Bielefeld
Kap. 1: Einführung Übersicht Hadron-Kollider
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 1, Intermezzo: Beispiele von hadronischen Kollisions- Experimenten D0 am Tevatron.
…Planung und Bau eines Detektors für die Teilchenphysik Unsichtbares sichtbar machen... R.-D. Heuer, Univ. Hamburg Heidelberg,
Quark- und Gluonstruktur von Hadronen
G. Flügge, T. Hebbeker, K.Hoepfner, J. Mnich, W. Wallraff
Elementarteilchenphysik/Astroteilchenphysik Seminarthemen Organisation
Moderne Methoden der Teilchen- und Astroteilchenphysik
Der Aufbau eines Atomkerns
Ties Behnke: TESLA - ein Weg zur Weltformel? 1 Tag der Wissenschaft - Berlin: TESLA Licht der Zukunft Teilchenphysik bei TESLA ein Weg zur.
Jenseits der Antimaterie
Erdgebundene Beschleuniger
Entdeckung des Myons und des Pions in der kosmischen Strahlung
Elementarteilchen aus dem Urknall
Experimentelle Methoden der Teilchenphysik oder Rundgang durch das CMS-Experiment Thomas Schörner-Sadenius, Georg Steinbrück Wir beschäftigen uns in dieser.
Kern- und Teilchenphysik 2
Wechselwirkung von Strahlung mit Materie
- Die Elementarteilchen
Kosmologie und Teilchenphysik
Kern- und Teilchenphysik
Masterclasses Hands-on Particle Physics
Programm – 09.50: Begrüßung und Umfrage – 11.30: Vorträge
Meilensteine der Teilchenphysik
Meilensteine der Teilchenphysik
Das Higgs-Teilchen - Der letzte Baustein im Standard Modell
1. Physik der Elementarteilchen.
3. Was bringt die Zukunft ? Was ist spontane Symmetriebrechung?
Überblick (1) Was sind Elementarteilchen ? Die ersten Teilchen
Das magnetische Moment der Leptonen
Reise in die subatomare Welt
Beschleuniger Teilchen umgeben uns überall
Perspektiven der experimentellen Hochenergiephysik - Teil 1
Die geheimnisvolle Welt der Elementarteilchen
Perspektiven der experimentellen Hochenergiephysik - Teil Claudia-Elisabeth Wulz Institut für Hochenergiephysik der Österreichischen Akademie.
Perspektiven der experimentellen Hochenergiephysik - Teil 1
Besuch im Teilchenzoo Claudia-Elisabeth Wulz Juli 2011
Günther Dissertori CERN , EP-Division Lehrer Seminar Februar 2000
Die wichtigsten stabilen Teilchen
Galaxiencluster, dunkle Materie und der LHC. Dunkle Materie August 2006: NASA Finds Direct Proof of Dark Matter
European Masterclasses 2007 Teilchenbeschleuniger&Detektoren.
Titel: Elementarteilchen
Teil 7: Offene Fragen der Teilchenphysik
der Elementarteilchen
Galaxien, dunkle Materie und der LHC. Etwas fehlt Wie schnell sich ein Stern in einer Galaxie um das Galaxienzentrum dreht, seine Rotationsgeschwindigkeit,
WYP 2005 European Masterclass Das Standardmodell Standardmodell der Elementarteilchenphysik.
Freitag, 28 September 2007 Prof. G. Dissertori
Wechselwirkungen von Strahlung mit Materie
Teilchenphysik-Quiz Präsentationstitel, Autor.
Der Nachweis des W und Z Bosons
Entdeckung der W/Z-Bosonen
Schwere Eichbosonen Seminarvortrag im Rahmen des F-Praktikums
Beschleuniger und Detektoren
Neutrino-Oszillation !
Standardmodell der Elementarteilchenphysik
Teilchenphysik-Quiz Präsentationstitel, Autor.
 Präsentation transkript:

Perspektiven der experimentellen Hochenergiephysik - Teil 1 135.284 Claudia-Elisabeth Wulz Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften c/o CERN/EP, CH-1211 Genf 23 Tel. 0041 22 767 6592, GSM: 0041 79 201 0919 E-mail: Claudia.Wulz@cern.ch http: //home.cern.ch/~wulz Nov. 2001

Literatur Theorie: M. Treichel: Teilchenphysik und Kosmologie, Springer-Verlag (2000) D. Griffiths: Introduction to Elementary Particles, J. Wiley and Sons (1987) Allgemein: B.R. Martin, G. Shaw: Particle Physics, J. Wiley and Sons (2nd ed. 1997) D. H. Perkins: Introduction to High Energy Physics, Cambridge U. Press (4th edition, 2000) Detektoren: W. R. Leo: Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag (2nd ed. 1994)

Webseiten Einführungen in die Teilchenphysik: http://www.cpepweb.org/particles.html http://particleadventure.org/particleadventure/index.html http://hepwww.rl.ac.uk/Pub/Phil/ppintro/ppintro.html http://www2.slac.stanford.edu/vvc/home.html Für Physiker/Studenten: http://training.web.cern.ch/Training/ACAD/acad0_E.html http://pdg.lbl.gov/

Elementarteilchenphysik Hochenergiephysik = Elementarteilchenphysik • Frage nach dem Aufbau und Zusammenhalt der Materie Lehre von Teilchen und ihren Wechselwirkungen •

Hochenergiephysik Dp Dl ≥ h Heisenberg'sche Unschärferelation Man benötigt umso höhere Energien, je kleiner die zu erforschenden Dimensionen sind. Dp Dl ≥ h Heisenberg'sche Unschärferelation Dl @ 1/GeV @ 0.2 . 10-15 m 1/4 der Ausdehnung des Protons Wichtige Einheiten und Größen h … Planck’sches Wirkungsquantum h = h/2p = 6.6 . 10-22 MeVs 1 eV = 1.6 . 10-19 Ws … Energieeinheit Masse des Protons: 938 MeV/c2 Anmerkung: c bzw. h werden oft 1 gesetzt, so daß MeV bzw. GeV Energie, Impuls oder Masse darstellen können.

Die fundamentalen Kräfte

Die starke Wechselwirkung Sie hält Atomkerne zusammen. Teilchen, die eine starke Wechselwirkung besitzen, heißen HADRONEN. Sie sind aufgebaut aus QUARKS. Die starke Wechselwirkung kommt durch den Austausch von Teilchen zwischen den Quarks zustande. Diese heißen GLUONEN. Weder Gluonen noch Quarks existieren jedoch als freie Teilchen (“CONFINEMENT”).

»» »» Die starke Wechselwirkung Ü Þ Ü Þ Gluonen und Quarks tragen Farbladung (“COLOR”) QUANTENCHROMODYNAMIK Sichtbare Teilchen sind jedoch farbneutral. Ü u u d Þ Proton u Ü »» u d Þ d d »» u d d u d p + Neutron

Das Quarkmodell 1964: Gell-Mann, Zweig Elementare Bausteine der Materie:

Das Quarkmodell

Mesonen, Baryonen Jedes Meson besteht aus 1 Quark und 1 Antiquark. Jedes Baryon besteht aus 3 Quarks.

Mesonenoktett - - K0 (ds) K+ (us) p0, h - - - p - (du) - - p + (ud) (uu,dd,ss) p0: (uu-dd)/√2 h: (uu+dd-2ss)/√6 h’: (uu+dd+ss)/√3 h’: 3 + 3 = 1 + 8 - - - K- (su) K0 (sd) Mesonenoktett

Baryonenoktett n (udd) p (uud) S0 (uds) S- (dds) S+ (dds) L (uds) X- (dss) X0 (uss) Baryonenoktett

Baryonendekuplett L- (ddd) L0 (udd) L+ (uud) L++ (uuu) S*0 (uds) S*- (dds) S*0 (uus) X*- (dss) X*0 (uss) L+ hat gleichen Quarkgehalt wie Proton, aber verschiedenes Energieniveau, analog H-Atom in verschiedenen Anregungs-zuständen. Quarks: Spin 1/2! Pauli-Prinzip -> COLOR (O.W. Greenberg) W- (sss) Baryonendekuplett

Sie tritt z.B. beim radioaktiven b-Zerfall auf: Teilchen ohne starke Wechselwirkung heißen LEPTONEN (z.B. Elektron, Müon, Neutrino). Die schwache Wechselwirkung wird durch die INTERMEDIÄREN VEKTORBOSONEN (W±,Z) vermittelt. Diese sind fast 100 mal so schwer wie das Proton und wurden 1983/1984 an den Experimenten UA1 und UA2 des CERN SppS-Colliders entdeckt. Carlo Rubbia und Simon van der Meer bekamen für ihre entscheidenden Beiträge den Nobelpreis.

[ + Antiteilchen ] x 3 Farben 36 Quarks Glashow, Salam, Weinberg (1978) 3 Familien (Generationen) von Quarks und Leptonen: e ne ( ) m nm t nt + Antiteilchen 12 Leptonen u d ( ) c s t b [ + Antiteilchen ] x 3 Farben 36 Quarks 4 Vermittlerteilchen der elektroschwachen Wechselwirkung: 3 I.V.B. (W±, Z) + 1 Photon (g) 8 Vermittlerteilchen der starken Wechselwirkung: 8 Gluonen (g)

Alle existierenden Daten werden sehr gut durch das Standardmodell beschrieben. Jedoch ist die Frage der Teilchenmassen ungeklärt! Im Standardmodell existiert ein Teilchen, das den Mechanismus erklärt, durch den Teilchen Massen erhalten - das Higgs-Boson. Bau des Large Hadron Colliders (LHC) ist notwendig! Strahlenergie: 2 x 7 TeV p-p Entdeckung könnte bei LEP gemacht worden sein, jedoch Signifikanz nicht hoch genug. Im Rahmen der Supersymmetrie könnte es auch mehrere Higgse sowie supersymmetrische Partner der bekannten Teilchen geben (Squarks, Sleptonen, Gluinos etc.).

Quellen hochenergetischer Teilchen 1950: Einzige Quelle hochenergetischer Teilchen war die Höhenstrahlung (kosmische Strahlung) Entdeckung von Positronen und Pionen. Heute: fast ausschließlich Teilchenbeschleuniger in Verwendung. Vorteil: nur 1 Projektil mit bekannter Energie. Fixed-Target-Experiment: stationäres Target Collider-Experiment: gegenläufige Teilchenstrahlen In beiden Fällen werden erzeugte Teilchen durch ihre Wechselwirkung mit Materie nachgewiesen Detektoren Linearbeschleuniger Speicherring

Teilchenbeschleuniger Elektromagnetische Kräfte werden benützt, um stabile, geladene Teilchen zu beschleunigen. Es wird eine Quelle benötigt, z.B. Glühkathode oder Ionenquelle. - Linearbeschleuniger (LINACs) - Zirkularbeschleuniger (Synchrotrone) Synchrotrone: “Kreisbahn” durch Anordnung von Dipolmagneten (Ablenkmagneten), Beschleunigung durch Hochfrequenzkavitäten. Zur Strahlfokussierung werden Quadrupol- bzw. Sextupolmagneten (Fokussiermagneten) verwendet.

Prinzip der Beschleunigung Elektromagnetische Welle von oben gesehen rot +, blau - Elektromagnetische Welle bewegt sich fort und nimmt Teilchen mit Elektromagnetische Welle Positiv geladene Teilchen in der Nähe des Maximums der Welle erfahren die größte Kraft nach vorne; die in der Nähe des Umkehrpunktes die kleinste. Als Folge davon tendieren die Teilchen dazu, sich zusammen mit der Welle fortzubewegen.

Schema eines Synchrotrons

Super-Proton-Synchrotron des CERN

Sextupolmagnet LHC-Teststand mit Dipolen

Querschnitt eines LHC-Doppeldipols

Schwerpunktsenergie - Laborenergie W2c4 = E2 - p2c2 W … invariante Masse einer Menge von Teilchen E, p … Gesamtenergie und -impuls Schwerpunktssystem (Centre of Mass Frame): p = S pi = 0 ECM = Wc2 z. B. Teilchenstrahl aus Teilchen mit Masse mS, der auf ein Target mit Masse mT trifft und den Impuls pL hat. Das Target ist in Ruhe, somit ist pT = 0. Teilchenenergien im Laborsystem: EL = √mS2 c4 + pL2 c2 ET = mT c2 W2 c4 = (EL + mT c2 )2 - pL2 c2 = mS2 c4 + mT2 c4 + 2 mT c2 EL ECM = √mS2 c4 + mT2 c4 + 2 mT c2 EL

Fixed-Target-Beschleuniger und Collider ECM … Schwerpunktsenergie, EL … Laborenergie pCM = 0 … Schwerpunktsimpuls, mS … Masse des Strahlteilchens, mT … Masse des Targetteilchens Fixed -Target-Beschleuniger Speicherring ECM = √mS2 c4 + mT2 c4 + 2mT2 c2 EL ECM = 2 EL ECM ~ √ EL viele Teilchen nur stabile, geladene hohe Luminosität Teilchen, niedrigere Luminosität

Fixed-Target-Beschleuniger Collider Beschleunigung und Speicherung für gleiche Teilchen mit entgegengesetzter Ladung in ein und demselben Magnetring (Speicherringe). Fixed-Target-Beschleuniger Beschleunigung bis zur Maximalenergie, Extraktion auf ein stationäres Target (fest oder flüssig). Primärstrahlen: stabile geladene Teilchen (z.B. p, e±) Sekundärstrahlen: neutrale oder instabile Teilchen (z.B. p, g, n).

Erzeugung von Sekundärstrahlen Zur Beschleunigung eignen sich nur stabile, geladene Teilchen. Jedoch braucht man auch neutrale (z.B. g) oder instabile Teilchen (z.B. p±). Diese können erzeugt werden, indem man einen Primärstrahl auf ein Metalltarget lenkt. Bei den Reaktionen mit den Kernen des Targets werden neue Teilchen erzeugt, die dann analysiert werden können. Beispiel 1: p+-Strahl p+ p X Y Kollimator elektrostat. u. magnet. Felder monoenergetischer Strahl schweres Target

Erzeugung von Sekundärstrahlen Beispiel 2: n-Strahl p± m± + nm m+ sowie noch nicht zerfallene p± werden in einem langen Absorber absorbiert. Keine Impulsselektion ist jedoch möglich! p± nm langes Vakuumrohr Absorber

Synchrotronstrahlung pro Umlauf: r … Krümmungsradius der Umlaufbahn b = v/c, g = (1-b2)-1/2 r … Krümmungsradius der Umlaufbahn Für b ≈ 1 (v ≈ c) mit E = gmc2 ist DE ~ 1/m4 hoher Energieverlust für Elektronen, deshalb haben in der Praxis konventionelle Elektronenbeschleuniger maximal ca. 100 GeV pro Strahl.

Teilchenbeschleuniger Impuls eines geladenen Teilchens im Magnetfeld: p = 0.3 B r r … Krümmungsradius in Metern B … Magnetfeld in Tesla Konventionelle Elektromagneten: Bmax ≈ 1.5 T Supraleitende Magneten: Bmax ≈ 10 T Aus obiger Formel wird ersichtlich, warum große Radien für große Strahlimpulse erforderlich sind. Die Synchrotronstrahlung spielt ebenfalls eine Rolle.

Luminosität R = s L L … Luminosität in cm-2 s-1 , R … Kollisionsrate in s-1 s … Strahl-Strahl-Wirkungsquerschnitt in cm2 Beispiel Teilchen-Antiteilchen-Speicherring (pp, e+e-): 1 Vakuumröhre bei gleichem magnetischem Führungsfeld. N … Anzahl der Teilchen pro Paket (“bunch”) Bei je 1 Paket gibt es 2 Kollisionspunkte. In jedem Kollisionspunkt (“Interaction Region”) treten Zusammenstöße mit der Frequenz f ≈ c/u auf, wobei u der Umfang des Speicherringes ist.

Luminosität N+N- L = f nbunch A Dann ist die Luminosität in einem Kollisionspunkt durch folgende Formel gegeben: nbunch … Anzahl der Pakete, N± … Anzahl der Teilchen pro Paket A … Strahlfläche bei kompletter Überlappung L A Fokussiermagneten (Quadrupole) “low b region” (b ~ Strahlenvelope). Teilchenoszillationen in vertikaler und horizontaler Richtung zur idealen Bahn: Betatronschwingungen. Longitudinale Schwingungen relativ zur Bewegung eines idealen Teilchens (phasengleich zum Hochfrequenzfeld): Synchtotronschwingungen. L = f nbunch N+N- A

Typische Luminositäten für Collider Beschleuniger Teilchen L/cm-2s-1 SLC (Stanford) e+ e- 0.35x1030 LEP (CERN) e+ e- 2x1031 HERA (DESY) e- p 1.6x1031 SppS (CERN) p p 6x1030 Tevatron (Fermilab) p p 2x1032 *) KEKB (Tsukuba) e+ e- 1x1034 PEP II (Stanford) e+ e- 3x1033 LHC (CERN) p p 1x1034 *) mit Main Injector, ohne 2x1031 1033 “TeV33”

Beschleunigerkomplex des CERN LHC/LEP SPS

Beschleunigerkomplex des Fermilab Tevatron Main Injector

Beschleunigerkomplex des Fermilab Tevatron Main Injector

Beschleunigerkomplex des SLAC

Beschleunigerkomplex des SLAC

Beschleunigerkomplex des KEK

Teilchennachweis Erzeugte Teilchen werden nachgewiesen durch: Wechselwirkung mit dem Detektormaterial Starke Wechselwirkung für Hadronen Schwache Wechselwirkung für Neutrinos Erzeugung neuer Teilchen bei genügend großer Energie Ionisierung von Atomen (geladene Teilchen) Abgabe von elektromagnetischer Strahlung (geladene Teilchen) g -> e+e-

Wechselwirkung mit Atomkernen Kurze Reichweiten. z.B. mit einfachstem Kern, dem Proton: Elastische Streuung: z.B. p - + p -> p - + p Inelastische Streuung: z.B. p - + p -> p + + p - + p 0 + n p - + p -> K0 + L

Totaler Wirkungsquerschnitt Wechselwirkung mit Atomkernen Totaler Wirkungsquerschnitt stot = sel + sinel stot = sel + sq + sinel (für größere Kerne) sinel … groß bei hohen Energien stot ≈ (10…100) mb (1 mb = 1 millibarn = 10-27 cm2) sq … Wirkungsquerschnitt für quasielastische Streuung (elastische Streuung an Nukleonen) Rückstoß -> Kernabstoßung -> Anregung bzw. Spaltung

stot und sel für p - + p stot = (10 … 100) mb s (mb) 10 sel 10-1 1 10 102 103 p (GeV/c) stot = (10 … 100) mb stot ≈ r 2p ≈ 30 mb für r ≈ 10-15 m

Wechselwirkung mit Atomkernen Kollisionslänge Wahrscheinlichkeit (Pc) für eine Hadron-Kern-Wechselwirkung in dünner Schicht mit Dicke dx. Pc = n stot dx (n = rNA/A … Kerne pro Einheitsvolumen) A … Molmasse (g/mol), r … Dichte (g/cm3), NA … Avogadrozahl (6.022 . 1023 / mol) Mittlere freie Weglänge (“Kollisionslänge”): lc = 1/n stot Absorptionslänge (“Interaktionslänge”) la (la ) = 1/n sinel Kollisions- und Absorptionslängen werden auch oft in g/cm2 angegeben: lc’ = A/NA stot = r lc, la’ = A/NA sinel = r la

Atomic and Nuclear Properties of Materials Particle Data Group (http: //pdg.lbl.gov)

Ionisation Alle geladenen Teilchen betroffen. Für mittlere Energien (200 GeV max.) dominieren Ionisationsverluste durch Coulombstreuung an Hüllenelektronen. Die Bethe-Bloch-Formel (hier für Teilchen mit Spin 0 und Ladung ±e) gibt den mittleren Energieverlust an: x … zurückgelegte Wegstrecke im Medium me … Elektronmasse Z … Ordnungszahl I … mittleres Ionsationspotential d(g) … dielektrischer Abschirmfaktor (nur für hochrelativistische Teilchen wichtig) ne … Elektronendichte des Mediums (ne = r NAZ/A) D … 4pa2h2 / me = 5.1.10-25 MeVcm2

(dE/dx)min ~ e2 Suche nach freien Quarks! Ionisationsenergieverlust für p ± und p in Blei Relativistischer Anstieg 20 1/b2 -dE/dx (MeV/cm) 15 Minimalionisierung (bg ≈ 3-4) 0.1 1 10 100 p (GeV/c) (dE/dx)min ~ e2 Suche nach freien Quarks!

[ ] Strahlungsverluste - dE/dx = E/Xo E = Eo exp(-x/Xo) 1 X » 4Z(Z+1) [ln(183Z -1/3 )] e 2 m c Geladene Teilchen werden im Kernfeld abgebremst bzw. beschleunigt Abstrahlung von Photonen Energieverlust (Bremsstrahlung). Vor allem wichtig für Elektronen und Positronen. (für relativistische Elektronen mit E >> mc2 / aZ1/3). X0 … Strahlungslänge (wichtig bei der Konzeption von elektromagn. Kalorimetern!)

Strahlungsverluste Für hohe Energien sind die Strahlungsverluste proportional zu E/m2. Aus der Bethe-Bloch-Formel geht hervor, daß die Ionisationsverluste nur schwach von der Masse und Energie des Projektils abhängen (bei hohen Energien). Strahlungsverluste dominieren für Elektronen und Positronen. Ec … kritische Energie = Energie, bei der Strahlungsverluste und Ionisationsverluste für Elektronen gleich sind Element Z Xo/cm Ec/MeV H (26 K) 1 1000 340 C 6 18.8 103 Al 13 8.9 47 Fe 26 1.8 24 Pb 82 0.56 7 600 Ec ≈ MeV Z

Wechselwirkung von Photonen mit Materie Annahme: Monoenergetischer Photonenstrahl mit I Photonen pro Sekunde, der durch ein Material der Dicke x durchgeht. Dann ist der Energieverlust gegeben durch: dI = - I dx/l I = I0 exp (-x/l) l = 1/nsg l ... mittlere freie Weglänge vor Absorption oder Streuung sg … totaler Photon-Wechselwirkungsquerschnitt mit einem Atom n … Kerne pro cm3

Wechselwirkung von Photonen mit Materie Beiträge zu sg: Photoelektrischer Effekt (Absorption durch Atom, Emission eines Elektrons) (~ Z5/Eg) Comptoneffekt (Photonstreuung an Hüllenelektronen) (~ Z/Eg) Paarerzeugung (im Kernfeld oder Hüllenelektronfeld) (~ Z2) 7 1 sPaarerzeugung ≈ 9 n X o I = I0 exp ( ) 7 x 9 X0 9 X0/7 … Konversionslänge Bei hohen Energien wird Photonabsorption, genauso wie der Strahlungs- verlust von Elektronen, durch die Strahlungslänge charakterisiert.

Photon-Wechselwirkungsquerschnitte für ein Blei-Atom 102 sg 10 s / b 1 c d 10- 2 b a 10- 4 10- 2 1 102 E / GeV a) Photoeffekt b) Comptonstreuung c) Paarerzeugung im Feld der Hüllenelektronen d) Paarerzeugung im Kernfeld