Seminar Windkraftanlagen 16.April 2007 HTBLuVA Wiener Neustadt

Slides:



Advertisements
Ähnliche Präsentationen
Pressekonferenz 17. Februar 2009, Wien
Advertisements

Anzahl der ausgefüllten und eingesandten Fragebögen: 211
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil3.
Windenergie Grundlagen, Technik und Forschung
Telefonnummer.
CPCP Institute of Clinical Pharmacology AGAH Annual Meeting, 29. Februar 2004, Berlin, Praktischer Umgang mit den Genehmigungsanträgen gemäß 12. AMG Novelle.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Workshop zur Medienarbeit der katholischen Kirche Aspekte des Religionsmonitors Berlin, 02. April 2008.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
= = = = 47 = 47 = 48 = =
-17 Konjunkturerwartung Europa September 2013 Indikator > +20 Indikator 0 a +20 Indikator 0 a -20 Indikator < -20 Europäische Union gesamt: +6 Indikator.
Windkraft Geschichte der Windkraft
Scratch Der Einstieg in das Programmieren. Scatch: Entwicklungsumgebung Prof. Dr. Haftendorn, Leuphana Universität Lüneburg,
© 2006 W. Oberschelp, G. Vossen Rechneraufbau & Rechnerstrukturen, Folie 2.1.
Grundkurs Theoretische Informatik, Folie 2.1 © 2006 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 2 Gottfried Vossen Kurt-Ulrich Witt.
Internet facts 2008-II Graphiken zu dem Berichtsband AGOF e.V. September 2008.
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
Astronomisch, Physikalische und Mathematische Geodäsie II
Prof. Dr. Bernhard Wasmayr
Schieferdeckarten Dach.ppt
Prof. Dr. Bernhard Wasmayr VWL 2. Semester
für die Länder des Südens
Rechneraufbau & Rechnerstrukturen, Folie 12.1 © W. Oberschelp, G. Vossen W. Oberschelp G. Vossen Kapitel 12.
Distanzbasierte Sprachkommunikation für Peer-to-Peer-Spiele
2 Distanzbasierte Sprachkommunikation für Peer-to-Peer-Spiele.
Konstruktionsmechaniker: K. Baldauf A. Heep P. Schmidt
Solarthermische Großkraftwerke Präsentation für Ökologie Physik.
Erdwärme (Geothermie)
Bild 1.1 Copyright © Alfred Mertins | Signaltheorie, 2. Auflage Vieweg+Teubner PLUS Zusatzmaterialien Vieweg+Teubner Verlag | Wiesbaden.
20:00.
Erneuerbare Energiequellen
Energieerzeuger der Zukunft
Die Windenergie in Frankreich
Dokumentation der Umfrage
für Weihnachten oder als Tischdekoration für das ganze Jahr
Energie.
Trendumfrage 2011 Das Zahlungsverhalten in Österreich
Gliederung Geschichte des Rauchens Auswirkung auf die Gesundheit
NEU! 1 2. Wo kommt diese Art von Rezeptor im Körper vor?
Windkraft Überblick über Funktionsweise und technische Systeme.
PROCAM Score Alter (Jahre)
Windenergieanlagen (auch Windkraftanlagen genannt)
Symmetrische Blockchiffren DES – der Data Encryption Standard
PARTENARIAT ÉDUCATIF GRUNDTVIG PARTENARIAT ÉDUCATIF GRUNDTVIG REPERES KULTURELLER ZUSAMMENHALT UND AUSDEHNUNG DER IDEEN AUF EUROPÄISCHEM.
Großer Altersunterschied bei Paaren fällt nicht auf!
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
Comenius-Projekt "Windkraft" Präsentation von Selina Braun
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Windkraftanlagen Von Martin Beres 3.a.
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Einführung in die Astronomie und Astrophysik I Kapitel III: Das Planetensystem 1 Kapitel III: Das Planetensystem.
1 Mathematical Programming Nichtlineare Programmierung.
Technische Frage Technische Frage Bitte löse die folgende Gleichung:
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Energietechnik Teil 2 – Erneuerbare Energien
Einfu ̈ hrung in die Weltwirtschaftspolitik Helmut Wagner ISBN: © 2014 Oldenbourg Wissenschaftsverlag GmbH, Mu ̈ nchen Abbildungsübersicht.
Kw MoDiMiDoFrSaSo 14 1 Semester- beginn: SS Vorlesungs- beginn: SS April 2008.
Das Zahlungsverhalten in Österreich
Es war einmal ein Haus
Sportverletzungen Fussgelenk-Tapeverband
J-Team: Gymnasium Ulricianum Aurich und MTV Aurich Ein Projekt im Rahmen von UlricianumBewegt.de Euro haben wir schon…  8000 mal habt ihr bereits.
Datum:17. Dezember 2014 Thema:IFRS Update zum Jahresende – die Neuerungen im Überblick Referent:Eberhard Grötzner, EMA ® Anlass:12. Arbeitskreis Internationale.
Energieträger Wasserstoff
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wie.
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Monatsbericht Ausgleichsenergiemarkt Gas – Oktober
Monatsbericht Ausgleichsenergiemarkt Gas – November
Regenerative Energien
 Präsentation transkript:

Seminar Windkraftanlagen 16.April 2007 HTBLuVA Wiener Neustadt DI Christof Flucher Vestas Österreich GmbH

-Vestas als Anlagenhersteller -Windenergieanlagen von Vestas -Antriebskonzepte und Netzeinspeisung

Vestas Geschichte - Meilensteine 1898: Das Jahr, als alles begann. Der Schmied H. S. Hansen eröffnete seine erste Werkstatt in Lem, Dänemark. 1979: Erste Windener-gieanlage auf dem Markt 1998: Börsennotierung an der Kopenhagener Börse 1898 1945 1979 1987 1998 2004 1945: VEstjysk STålteknik A/S wird gegründet (Haushalts- und Land-wirtschaftsmaschinen etc.) 1987: Vestas Wind Systems A/S wird gegründet 2004: Zusammenschluss von NEG Micon A/S und Vestas Wind Systems A/S Milestones: 1898: The year when it all started. The year when H. S. Hansen, the blacksmith, stepped off the train at the station in Lem, Denmark, and opened his first workshop shortly afterwards. “Smith Hansen” was a success from the start on account of his rich stock of ideas and fearless initiative. It seems that he was also an inspiration to his assistant smiths, as many of them subsequently started their own businesses. The town of Lem gradually developed into an important center for the blacksmiths’ craft. 1945: Peder Hansen (H.S.´s son) leaves Dansk Stålvindue Industri and joins forces with nine colleagues to establish the company VEstjysk STålteknik A/S, which subsequently changes its name to Vestas. The company’s start capital is DKK 75,000. The Vestas team moves into a collection of simple wooden buildings and starts to manufacture household appliances such as mixers and kitchen scales. 1979: Vestas is now ready to deliver the first wind turbines to customers who wish to invest in alternative energy. The following years prove Vestas’ decision to start manufacturing wind turbines to have been the right choice, as the industry experiences a genuine boom at the start of the 1980s. Six years later, in 1985, Vestas employs around 800 people, and it is also during this period that Vestas builds the first extensive turbine factory (12,000 m2) on the outskirts of Lem. 1986: A problematic year for Vestas. The special tax legislation that provided advantageous conditions for the establishment of wind turbines in California, expires at the end of 1985, effectively destroying Vestas’ market in the United States. A rescue plan is initiated in February, but on 3 October, the Group is forced to suspend payments. Nevertheless, there is nothing wrong with the turbines themselves, and it soon becomes clear that Vestas’ quality products and extensive know-how constitute an excellent basis for starting again. 1987: Following the crisis of 1986, large sections of the Vestas Group are sold off so that it is possible to establish a new company called Vestas Wind Systems A/S at the end of 1986 – a company that concentrates exclusively on wind energy. A new management team and around 60 employees form the basis for the second chapter of the Vestas story. 1998: Vestas is floated on the Copenhagen Stock Exchange. The purpose of this flotation is to generate capital for growth, which is continuing in all markets and requires new facilities for fibreglass production and unit assembly. 2004: The combination of NEG Micon A/S and Vestas Wind Systems A/S is now a reality. The organisation is being launched under the Vestas name and will be the world leader in the wind power industry. It will benefit customers through superior customer service, state-of-the-art technology and synergies of innovation to lead the industry into the future.

VESTAS - Hauptaktivitäten Entwicklung, Produktion, Vertrieb, Marketing und Wartung von Anlagen, die mit Windenergie Strom erzeugen Forschung und Ent- wicklung Produk- tion und Tests Vertrieb Planung Trans- port Instal- lation Service Wartung “Vestas’ strategy is to supply customised wind power systems based on standard wind turbines and standardised options that can generate electricity of the optimal quality at the most competitive price.” Vestas’ principal activities are the development, manufacture, sale and maintenance of systems that use wind energy to generate electricity. Vestas supplies a full range of products, from individual turbines to the delivery of turnkey wind power systems. As a strong, independent partner, Vestas can supply guidance to customers in connection with the development, financing and ownership of wind turbine projects. However, Vestas never participates directly in these activities. On the contrary, Vestas is the independent system supplier. In a growing market, Vestas is distinguished by a high degree of vertical integration, manufacturing all components that cannot be purchased from external suppliers in standard or slightly modified forms. By manufacturing the principal parts of the turbine itself, Vestas increases the flexibility of its product development, reduces its dependence on suppliers, and maintains its high level of manufacturing know-how. At the same time, Vestas’ strategy involves ensuring that production and sourcing are carried out as closely to the market as possible, which will similarly reduce dependency on different currencies. Vestas provides maintenance of the turbines in the warranty period (2 or 5 years) - and is offering service solutions for a period of 20 years.

Windenergieanlagen in über 50 Märkten USA Dänemark Norwegen Griechenland Deutschland China Australien The wind turbine market is a global market, and Vestas has installed around 29,000 wind turbines in more than 50 countries. In total Vestas and Vestas’ associated company have delivered 964 MW in 1 half year 2005 which is a minor decline of approximately 1% compared to 1 half year 2004. In particular, the deliveries to Australia, India and Italy have increased, whereas deliveries to Germany, Spain and Great Britain have decreased considerably during 1 half year 2005. Deliveries to the three last mentioned markets as well as to the USA are, however, expected to increase considerably during 2 half year 2005 where a number of projects are planned for delivery to these areas. In general, the markets are developing satisfactorily and in accordance with Vestas’ expectations with a positive development in the USA and in a number of European and Asian markets. Vestas is experiencing a constantly growing interest for wind power which is not only driven by Vestas’ technological development activities, but also by the price development of other energy sources including in particular the heavily increasing oil prices. Status of selected markets in 1 half year 2005 Germany: Germany is still a large and stable market characterized by huge seasonal fluctuations. Vestas’ order intake in 1 half year 2005 has lived up to the expectations and there will be a big pressure on the transportation and installation capacity in 2 half year. In September 2005, Germany will hold an extraordinary federal election, which may have an effect on the present energy policy. The political direction of the future energy policy is expected to be determined during the spring of 2006. Through its ratification of the Kyoto protocol Germany has a target of 12.5% renewable energy before 2010. Today the share of renewable energy in Germany is approximately 9%, of which approximately half, equivalent to 17,000 MW, comes from wind power cf. Bundesgesetzblatt (BGBI. I, S. 1918 ff). If Germany has to reach the Kyoto target and 2% of the remaining 3.5% of the target will come from wind power, this corresponds to installation of another approximately 6,800 MW wind power in Germany. In 1 half year 2005, Vestas delivered 128 MW to the German and Austrian markets. Australia/New Zealand: As anticipated, Vestas’ high level of activity in Australia and New Zealand has continued in 2005 with deliveries of a total of 195 MW in 1 half year. In July, Vestas received an order for 48 units of V82-1.65 MW wind turbines to Australia, which confirms Vestas’ continuous strong position in the Australian market. On 4 August 2005, Vestas’ new blade factory in Portland, Victoria, was officially inaugurated. The factory will be producing blades for MW wind turbines. The Australian market is driven by the availability of the Mandatory Renewable Energy Target (MRET). As described by Vestas in May 2005, there has been a strong pressure on the Australian government to prolong and raise the MRET. It is, however, Vestas’ understanding that the present government intends to continue with an unchanged MRET. Regional initiatives for exploitation of Australia’s excellent wind resources to a certain extent support the market for wind power, but the consequence of the government’s policy is that the long-term market potential for wind power in Australia is now considered very unstable. The market in New Zealand is, however, expected to grow in the coming years. The market is driven by a large wind potential, lack of energy, and the possibility of trading carbon credits. USA/Canada: There is a very high level of activity in the American market where a number of large projects are under construction at the moment. The present Production Tax Credit (PTC) scheme has just been extended for two years and will now expire at the end of 2007. The extension of the PTC scheme is a very positive signal to the market and in the short term this will contribute to an increased stability, but unfortunately the suggested mandatory demand for renewable energy (Renewable Portfolio Standard) was not approved. Vestas’ positive expectations for the future prospects for the American market are, however, still supported by RPS schemes on state level as well as higher prices of other energy sources in the USA. Vestas has also positive expectations for the Canadian market, where the Canadian government has increased the Wind Power Production Incentive (WPPI) from the original target of 1,000 MW to 4,000 MW. The WPPI scheme gives the power producers a payment of 1 cent/kWh over a period of 10 years. Furthermore, the government has published a plan for reduction of Canada’s emission of greenhouse gasses in order to work towards complying with the Kyoto protocol target for 2010. The plan comprises a trading system for emission of greenhouse gasses for large industrial polluters and supports the financing of domestic investments which contribute to reducing the emission of greenhouse gasses. At the same time regional initiatives for renewable energy also support a stable growth and e.g. the provinces of Quebec and Ontario have issued Requests For Proposal (RFPs) for 2,000 and 1,000 MW, respectively. In 1 half year, Vestas delivered 78 MW for USA and Canada.

Development of Vestas turbines The annual production is based on the following conditions: A wind speed measurement at a height of 40 metres An average wind speed of 7 m/s c = 2.0 Air-mass density = 1.225 kg/m3 Wind shear 0.15 Maximum noise level Tower heights (hub height):  V44: 40m  V47: 45m V52: 50m V66: 67m V82: 80 m V80: 78m V90-1.8/2.0 MW*: 80 m V90-3.0 MW: 80 m V100-2.75 MW: 80 m V120: 90 m *For IEC III turbines, the nominal output is 2 MW (V90). The annual production is calculated at a max. mean wind speed of 7.5 m/s at hub height. V100 prototypes will be installed in a number of markets during 2006. Vestas expects to commence serial production in 2007. The first V120 prototypes are expected to be available in 2009. The annual production (MWh/year) for V100 and V120 will not be available until they have been released for sale. The development of Vestas’ product range has moved in the direction of larger turbines. The first turbines that entered the market in 1981 had a rotor diameter of 15 metres, a 22 metre tower and a 55 kW effect. Today, Vestas’ largest turbine - the V120 - has a rotor diameter of 120 m and the nominal output is 4.5 MW. That means that it takes 74 units of V15 turbines to produce the same amount of energy as is produced by one V120 turbine.

Steigerung des Energieertrages mit größerer Rotorfläche *hub height

Anlagen Modelle (Serienprod. 2006) Kilowatt -Klasse V52-850 kW Megawattklasse 1.5 MW V82-1.65 MW Megawattklasse 2.0 MW V80-1.8 MW V80-2.0 MW V90-1.8 MW V90-2.0 MW Megawattklasse 3.0 MW V90-3.0 MW Vestas’ turbines range from kW turbines to 4.5 MW turbines, and the Group operates the broadest product portfolio in the industry. The overriding goal of Vestas’ product development plan is to develop wind power systems that can generate electricity of optimal quality at the most competitive price – without compromising on safety, quality or environmental aspects. With the emphasis on product reliability, it is important that Vestas continues to use and develop tried and tested technologies. Vestas consciously applies integrated product development, which is run in close collaboration with suppliers, universities and other institutions. This ensures that Vestas is in a position continuously to improve product platforms. Vestas’ development efforts have moved from focusing on single wind turbines to focusing on entire Wind Power Systems.The move is a natural consequence of the change in the market place, were projects are getting bigger and bigger and increasing volume of wind power has to be connected to the grid in an efficient way. The turbine programme covers all segments and new turbine models in the pipeline will strengthen the product programme even further. Vestas is focusing on significantly improving the reliability of its products by continuously refining the products and minimising component failure. V120-4.5 MW – the offshore turbine of the future The V120-4.5 MW has primarily been developed for offshore operation. One of the factors behind the improved competitiveness is the lighter blades. Moreover, a more intelligent control system contributes to a reduction on the loads on the turbine as a whole. This means that it is possible to use less material to manufacture the tower. At the same time, the amount of material needed for the foundations will also be reduced, thus helping to make the turbine even more competitive. The V120 is expected to be on the market in 2009. V100-2.75 MW – the turbine for sites with low and moderate winds The V100-2.75 MW turbine is a planned development of the V90-3.0 MW model which, with its special construction in which the main axle has been replaced by a giant ring bearing, constitutes a giant technological leap forward for Vestas. The V100-2.75 MW turbine is based on the same technological platform as the V90-3.0 MW model, and extends Vestas’ product range with a particularly competitive turbine for sites with low to moderate winds. The V100 is designed for IEC II og DIBt II sites. Prototypes will be installed in a number of markets during 2006. Vestas expects to commence serial production in 2007. V80-2.0 MW, Germany

Installierte Vestas Turbinen -nach Modellen

Niederlassungen global Nacelle assembly: Ringkøbing (Denmark), Viborg (Denmark), Randers (Denmark), Lem (machine factory, Denmark), Skagen (machine factory, Denmark), Kristianssand (Windcast, foundry, Norway), Lidköping and Guldsmedshyttan (Windcast, foundry, Sweden), Magdeburg (Windcast, foundry, Germany), Chennai (India), Cambpeltown (Scotland), Galicia (Spain), Wynyard (Australia), Taranto (Italy) Future establishment of nacelle assembly factory: Spain, Villadangos, in the province of Castilla y León. The factory is expected to be put into operation during the first half of 2006 and when fully operational, the factory will have an annual capacity of 300 nacelles Production/assembly of control units: Ólvega (Spain), Hammel (Denmark), Lem (Denmark), Århus (Denmark) Tower production: Varde (Denmark), Rudkøbing (Denmark), Campbeltown (Scotland), Svendborg (Denmark), Hammel (Denmark) Blade production: Lem (Denmark), Nakskov (Denmark), Taranto (Italy), Lauchhammer (Germany), Isle of Wight (Great Britain), Portland (Victoria, Australia) Future establishment of blade production: China, in Tianjin Economic-Technological Development Area (TEDA), where Vestas has signed a contract to buy about 190,000 m2 of land. The establishment of the factory that will employ about 240 people will be started as soon as possible, and Vestas expects to deliver the first 39-metre blades for V80-2.0 MW wind turbines during the first half of 2006. Sales offices: Denmark, Sweden, Scotland, Great Britain, Poland, Germany, the Netherlands, France, Spain, Portugal, Italy, Greece, Australia, New Zealand, Japan, China, United States, Canada, Brazil, Argentina

Maschinenhausproduktion Maschinenteile Dänemark Nabengussteile, etc. Norwegen Schweden Deutschland Generatoren (China) Montage Australien Indien Italien Schottland Spanien Nacelle: Assembly: Ringkøbing, Denmark; Viborg, Denmark; Chennai, India; Campbeltown, Scotland; Galicia, Spain; Wynyard, Australia; Taranto, Italy; Villadangos, the province of Castilla y León, Spain. Components: Lem, Denmark (machining factory); Skagen, Denmark (machining factory); Kristianssand, Norway (Vestas Castings, casting); Lidköping and Guldsmedshyttan, Sweden (Vestas Castings, casting); Magdeburg, Germany (Vestas Castings, casting); Lübeck, Germany (generator factory) Future establishment of nacelle assembly factory: China, in Tianjin Economic-Technological Development Area (TEDA). The factory will be built as an extension to the blade factory in Tianjin and is expected to start production in first half of 2007. The factory will be able to manufacture around 350 nacelles and hubs per year. Future establishment of generator factory: China, in the Tianjin Economic-Technological Development Area. The factory will be established in connection with Vestas’ other Chinese factories. The establishment will be initiated as soon as possible, and it is expected that the factory will be able to produce its first generators during the second quarter of 2007. The factory will from the beginning have an annual production capacity of approx 350 units of 2 MW generators.

Rotorblattproduktion Dänemark England Italien Deutschland Australien China USA Spanien Blade production: Lem, Denmark; Nakskov, Denmark; Taranto, Italy; Lauchhammer, Germany; Isle of Wight, England; Portland, Victoria, Australia; Tianjin Economic-Technological Development Area (TEDA), China Future establishment of blade production: The blade factory in Tianjin Economic-Technological Development Area (TEDA), China, is to double its production capacity. The extension of the factory, which is expected to be operational by the middle of 2007, will double the original factory’s annual production capacity from approx 600 blades to approx 1,200 blades.

Turmproduktion Dänemark Schottland Tower production: Varde, Denmark; Rudkøbing, Denmark; Campbeltown, Scotland; Svendborg, Denmark; Hammel, Denmark Towers can be produced in all countries if the project is large and we can find good suppliers - Vestas’ quality standards must be fulfilled.

Steuerungsproduktion Dänemark Spanien Production/assembly of control units: Ólvega, Spain; Hammel, Denmark; Lem, Denmark; Århus, Denmark

Transport per LKW The size of the Vestas turbines makes it necessary to develop the transportation equipment. In fact, transportation has become a key competence in itself, and Vestas has in cooperation with the Dutch company Nooteboom developed a system for transportation of nacelles and towers.

Transport per Zug

Transport per Schiff Vestas has developed a container for overseas transport of e.g. blades, which makes it possible to carry three blades - each with a length of 32 m - at a time. River transport Transport on national roads can be problematic. It can be an irritation for the other drivers, authorities can sometimes take a very long time to process the required transport permits, and, finally, road transport generates a degree of environmental impact. One of the big challenges at present is thus to find alternatives to road transport through Europe. The entire Central European region has a very well-developed networks of canals and watercourses, so in 2004, Vestas tested the option of river transport to deliver two V66-1.75 MW wind turbines to a project in Switzerland. Vestas considers river transport to be a good alternative to conventional forms of transport. However, there are a number of factors that have an appreciable effect on the profitability of this solution. For example, the turbine site must be close to the landing point to eliminate the need for a long drive to the site. Similarly, the transport time must be taken into account as the barges sail relatively slowly and the route by water is often longer than that by road.

Warum Offshore? Vorteile bessere Windverhältnisse geringere Turbulenzen viele große unerschlossene Gebiete keine „physikalischen Grenzen” in Bezug auf Größe und Gewicht Es gibt keine Menschen in der Umgebung, die sich belästigt fühlen Nachteile Installation und Wartung sind komplizierter und kostenintensiver Offshore, there is typically more wind and less turbulence than onshore because there are no mountains, buildings, or vegetation to create ”roughness”. In many places, for example Denmark, it is often difficult to find additional suitable sites onshore and this provides a good reason to erect them offshore. That way it is also avoided that people are bothered by the noise and the sight of the large machines. The offshore turbines are mostly erected several kilometres from the shore, so that people can only catch a glimpse of them in the horizon. As a result, the turbines can rotate faster and thus make more noise without disturbing people. Tests have shown that neither fish nor birds are bothered by the turbines. The disadvantages of the offshore turbines are the more difficult installation and service caused by waves impeding access to the turbines. The work at sea also requires other safety measures and extended safety courses. V80-2,0 MW, England

Entwicklung der jährlichen kumulierten installierten Leistung

Weltmarkt Anteile 2005 Source: BTM Consult ApS Source: BTM Consult ApS, World Market Update 2005. Forecast 2006-2010. March 2006. Source: BTM Consult ApS

Einführung in die Technik einer Windenergieanlage

Inhaltsverzeichnis Was ist Wind, und warum sind wir daran interessiert Grundelemente einer WEA Antriebskonzepte, Anlagenregelung, Stromeinspeisung und Stromaufbereitung Husk nu at skrive speakers notes istedet for at overdynge sliden med tekst!!

Was ist Wind, und warum sind wir daran interessiert Die Erde dreht sich um ihre eigene Achse. Schon dadurch werden Winde erzeugt. Durch die Sonneneinstrahlung wird die Erde unterschiedlich erhitzt. Warme Luft strömt vom Äquator zu den Polen.

Was ist Wind, und warum sind wir daran interessiert Die Luft erwärmt sich schneller über dem Land als über dem Meer. Warme Luft steigt auf und kühlt sich hoch im Himmel wieder ab. Über dem Meer drückt die abgekühlte Luft die Luft darunter gegen das Land - Wind

Was ist Wind, und warum sind wir daran interessiert Preise für fossile Energieträger steigen Dagegen wird die Technik der WEA effizienter Windenergie - eine saubere Energienutzung Größere Unabhängigkeit von Ölimporten (Ölpreis – Ölförderung)

Grundelemente einer WEA

Grundelemente einer WEA Gondel Rotor Turm Trafo Fundament

Grundelemente einer WEA Das Herzstück der Windenergieanlage:

Grundelemente einer WEA Nabe mit hydraulischer Blattverstellung Anemometer Getriebe Trans-formator Rotor IMPORTANT INFORMATION Please do not include too much information on the slides. Instead, the speaker should make use of “speaker notes”. “The blue line” guidelines: The use of the blue line at the bottom of the photo is optional The blue line should be used if there is a need to add relevant text to a photo (site name, turbine model etc.) and must be placed at the bottom of the photo (with no space between the line and the photo) Photo text layout: Verdana 12 pt, font colour white The blue line is not a pre-fixed element on photo slides. Use the copy/paste function to move the line to other slides The length of the blue line can be adjusted, but the height of the line must always correspond to the height displayed on this slide (0.6 cm). To ensure the correct height of the blue line, right click on the line, select Format Autoshape from the menu > Size > Size and rotate and select 0.6 cm for height Hauptwelle Schnelle Welle Generator

Maschinenhaus der V90-3,0 MW Getriebe Rotor Nabe V90-3,0 MW - Vægt (IEC): Hub height 65 m: Tower: 115 t Nacelle: 68 t Rotor: 40 t Total: 223 t Hub height 80 m Tower : 156 t Total: 264 t Hub height 90 m: Tower : 205 t Total: 313 t Hub height 105 m: Tower : 275 t Rotor: 40 t Total: 383 t Transformator Generator Turm

Leistungsbegrenzung und Antriebskonzepte

Art der Leistungsbegrenzung STALL-EFFEKT Leistungsbegrenzung durch Strömungsabriss (Stall) Die Stall-Regelung ist die einfachste und das älteste Regelungssystem

Art der Leistungsbegrenzung PITCH-EFFEKT Leistungsbegrenzung durch Verdrehung der Rotorblätter (Pitch) Die Regelung der Leistung ist bei pitch-geregelten Windkraftanlagen durch das Verdrehen der Rotorblätter gewährleistet.

Entwicklung der Leistungsbegrenzng

Antriebskonzeptze netzparalleler WKA Die wichtigsten Konzepte netzeinspeisender WKA sind folgende: ältestes Konzept: Stall, Asynchronmaschine (dänisches Konzept) Eine verbesserte Variante des dänischen Konzepts ist die Verwendung des Asynchrongenerators mit Schlupfregelung indirekte Netzeinspeisung mit Synchrongenerator über Umrichter Indirekte Netzeinspeisung mit doppelt gespeistem Asynchrongenerator

Dänisches Konzept (Stall-Anlage mit ASM-Kurzschlußläufer)

Asynchrongenerator mit Schlupfregelung Hier wird der Rotor durch eine Blattverstellung geregelt und arbeitet in einem begrenzten Bereich drehzahlvariabel. Der Asynchrongenerator kann durch eine Schlupferhöhung bei Böen oder starkem „drehzahlweich“ rotieren, um Belastungen für die Struktur stark zu reduzieren. Hierbei kann die Böe in eine Drehzahl- und damit in eine Schlupferhöhung umgesetzt werden, welche dann durch eine Blattwinkelverstellung der Rotorblätter aufgefangen wird. Die dabei entstehende Verlustleistung wird als Wärme an die Umgebung abgegeben und kann nicht als Energieertrag genutzt werden.

Drehzahlvariable Anlage mit Synchrongenerator

Drehzahlvariable WKA mit doppelt-gespeistem Asynchrongenerator

Marktanteil der Antriebskonzepte

Stromproduktion einer WKA Generatoren Der Generator ist ein Energiewandler und wandelt die mechanische Energie des Rotors in elektrische Energie um. Bauarten heutzutage: Für Windgeneratoren gibt es im wesentlichen zwei unterschiedliche Bauarten: SYNCHRONGENERATOR ASYNCHRONGENERATOR Asynchrongeneratoren (und besonders die doppelt gespeisten Asynchrongeneratoren) werden in der Windindustrie sehr häufig verwendet.

Strom, Spannung, Transformation Windkraftanlagen produzieren 3-Phasen-Wechselstrom wie jedes elektrische Kraftwerk. Die Spannung hängt von der Leistungsklasse der Windkraftanlage ab: 400 V bei kleinen Anlagen (bis max. 600 kW) 690 V bei sehr großen Anlagen (0,5 bis 2,5 MW) 1000 V bei sehr großen Anlagen (z.B. bei der V90-3.0 MW)

(Frequenz)Umrichter Generatoren wandeln die mechanische Energie des Rotors in elektrische Energie um. Konzepte mit Starrer Drehzahl sind mit Asynchrongeneratoren ausgestattet und können ins Netz direkt einspeisen: ein Umrichter ist bei diesem Konzept nicht nötig. Heute wird jedoch die große Mehrheit der Windkraftanlagen mit variabler Rotordrehzahl betrieben. Hierfür ist ein Umrichter nötig. Abb: Schema eines Umrichters

Spannungsanpassung Diese Spannung wird mit einem Transformator auf 20-110 kV hochtransformiert, in Abhängigkeit von der lokalen Netzspannung. Der Transformator kann sich in der Gondel, im Turm oder in einer Trafostation neben der Anlage befinden. Bei den großen Vestas-Anlagen ist er in der Gondel situiert. Die Mehrheit der errichteten Anlagen ist mit frequenzvariablen Generatoren ausgerüstet. Dieser Strom wird dann mit Hilfe eines Umrichters an die gewünschte angepasst (50 Hz in Europa, 60 Hz in Amerika).

Die Windkraftanlage V90-2.0 MW Beschreibung Grundriß im Turmfuß Blitzschutz- und Erdungskonzept Übersichtsschaltbild Generatordaten VMP-Controller Mittelspannungsanschluß Netzüberwachung

Diskussion

Vielen Dank für Ihre Aufmerksamkeit