Rheinisch-Westfälisches Institut für Wirtschaftsforschung 1March 31, 2006Haisken-DeNew / Stata 2006 Mannheim „Implementing Restricted Least Squares in.

Slides:



Advertisements
Ähnliche Präsentationen
Kerndichteschätzung Nearest-Neighbour-Verfahren
Advertisements

Forschungsdatenzentrum der Bundesagentur für Arbeit im Institut für Arbeitsmarkt- und Berufsforschung Two Issues on Remote Data Access.
Verbs Used Impersonally With Dative Deutsch I/II Fr. Spampinato.
Can you think of some KEY phrases which would be useful in multiple contexts? Take 2 minutes with a partner and come up with as many as you can!
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
What do you see? Looks like President Clinton and Vice President Gore, right? Wrong... It's Clinton's face twice, with two different haircuts.
You need to use your mouse to see this presentation © Heidi Behrens.
Die Olympischen Sommerspiele 2012 (offiziell Spiele der XXX. Olympiade genannt) sollen vom 27. Juli bis 12. August 2012 in London stattfinden. London ist.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
How Does Fuzzy Arithmetic Work ? © Hartwig Jeschke Institut für Mikroelektronische Schaltungen und Systeme Universität Hannover
Der formelle Imperativ – the Imperative
Qualitätssicherung von Software Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FIRST.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
The prepositions in and an Two way prepositions. What are two-way prepositions? 0 A set of prepositions can take the dative or the accusative case: "an",
Review of Verb Tense & Expressing Opinions
Die Fragen Wörter Wer? Was? Wann?.
Weak pushover verbs..... lieben kaufen spielen suchen....are verbs that do exactly as they are told. They stick to a regular pattern that does not change!
Synchronization: Multiversion Concurrency Control
Deutsch 1 G Stunde. Dienstag, der 13. November 2012 Deutsch 1, G Stunde Heute ist ein G- Tag Unit: Family & home Familie & Zuhause Question: Who / How.
Literary Machines, zusammengestellt für ::COLLABOR:: von H. Mittendorfer Literary MACHINES 1980 bis 1987, by Theodor Holm NELSON ISBN
COMMANDS imperative 1. you (formal): Sie 2. you (familiar plural): ihr
© Crown copyright 2011, Department for Education These materials have been designed to be reproduced for internal circulation, research and teaching or.
Imperfekt (Simple Past) Irregular or strong verbs
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Memorisation techniques
Ruf mich an!.
Wegbeschreibung Sven Koerber-Abe, 2015.
Rheinisch-Westfälisches Institut für Wirtschaftsforschung Rüdiger Budde Analysis with Remi Policy Insight in Nordrhein Westfalen – Including.
Sven Koerber-Abe, 2015 Grammatik: können, wollen, möchten Grammatik: können, wollen, möchten.
Sven Koerber-Abe, 2015 Grammatik: müssen, dürfen Grammatik: müssen, dürfen.
Position Sven Koerber-Abe, 2015 ▪ ▪. in Der PC ist in ___ Box.
Dativ Sven Koerber-Abe, 2015.
On the case of German has 4 cases NOMINATIVE ACCUSATIVE GENITIVE DATIVE.
Indico Meeting Dennis Klein 4. August Übersicht  Korrespondenz CERN  Trouble Ticket Queue  Integration GSI-Accounts  Subversion & Wiki  Todo.
Sven Koerber-Abe, 2016 Grammatik: Artikel (Zusammenfassung) Grammatik: Artikel (Zusammenfassung)
What’s the weather like?. Look at the question above Turn it around and you have Das Wetter ist.... The phrase Das Wetter ist.... or Es ist.... can be.
© Boardworks Ltd of 8 © Boardworks Ltd of 8 This icon indicates that the slide contains activities created in Flash. These activities are not.
LLP DE-COMENIUS-CMP Dieses Projekt wurde mit Unterstützung der Europäischen Kommission finanziert. Die Verantwortung für den Inhalt dieser.
Interrogatives and Verbs
Sentence Structure Questions
FREE ICONS POWERPOINT TEMPLATE.
Freizeit Thema 5 Kapitel 1 (1)
you: ihr ( familiar plural ) you: du ( familiar singular)
Deutsch I Telling time….
Sentence Structure Connectives
Jetzt machen Venues aufmachen!!! Geh zu
Jetzt machen Venues aufmachen!!! Geh zu
Grammatik: Perfekt Sven Koerber-Abe, 2014.
IETF 80 Prague DISPATCH WG
Grammatik: waren / hatten
Telling Time in German Deutsch 1 Part 1.
Dativ Sven Koerber-Abe, 2015.
THE PERFECT TENSE IN GERMAN
THE PAST TENSE (Part 3) VERBS WHICH TAKE SEIN
Ferrite Material Modeling (1) : Kicker principle
To English Translations
Grammatik: Perfekt Sven Koerber-Abe, 2014.
ELECTR IC CARS Karim Aly University of Applied Sciences.
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
THE PAST TENSE (Part 3) VERBS WHICH TAKE SEIN
What do you see? Looks like President Clinton and Vice President Gore, right? Wrong... It's Clinton's face twice, with two different haircuts.
Calorimetry as an efficiency factor for biogas plants?
Ich - Projekt Due Monday, September 19..
School supplies.
- moodle – a internet based learning platform
You need to use your mouse to see this presentation
Grammatik: Position Sven Koerber-Abe, 2013.
 Präsentation transkript:

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 1March 31, 2006Haisken-DeNew / Stata 2006 Mannheim „Implementing Restricted Least Squares in Linear Models“ Dr. John P. Haisken-DeNew

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 2March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 1a. Background  Inter-Industry Wage Differentials - Why do secretaries in the steel industry make more money than otherwise observably identical secretaries in the services industry? - Calculating „wage differentials“: Wages in steel > services ? - Dummy Variables: 0 or 1  Starting Point Krueger/Summers (1988) „Efficiency Wages and the Inter-Industry Wage Structure“, Econometrica, 56, p Would like to interpret differentials as deviations from a weighted average - Remove arbitrary selection of reference category - Excellent seminal paper, however technical problems … - Attempt to implement Restricted Least Squares (RLS) but.. - Incorrect standard errors: t-values systematically biased downward - Incorrect overall inference: Variation systematically biased downward

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 3March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 1b. Background  Technical Contribution (in Handout) Haisken-DeNew/Schmidt (1997) „Inter-Industry and Inter-Regional Differentials: Mechanics and Interpretation“, Review of Economics and Statistics, 79(3), p How to implement Restricted Least Squares (RLS) correctly - How to implement RLS after any linear model (OLS, FE, RE…) - RLS was implemented in GAUSS, LIMDEP and Stata (crudely)  Now RLS is implemented in Stata in a flexible Ado - What does the syntax look like?

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 4March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 2a. RLS - One Dummy Set  Run a linear regression reg/xtreg depvar indepvars  Standard Syntax (only ONE dummy set) hds97 indepvars [, options] options description refname( string ) a string containing the name of the "reference" category realname( string ) a string containing a descriptive name for the set of dummy variables weight( varname ) a string containing the name of the weighting variable

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 5March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 2b. RLS - Many Dummy Sets  Run a linear regression reg/xtreg depvar x* Xvar_1 Zvar_1 Zvar_2 Dvar_* XXLvar_*  Advanced Syntax (MANY dummy variable sets) global hds97_1 Xvar_1 Xvar_ref descriptive_name_for_X global hds97_2 Zvar_1 Zvar_2 Zvar_ref descriptive_name_for_Z global hds97_3 Dvar_* Dvar_ref descriptive_name_for_D... global hds97_50 XXLvar_* XXLvar_ref descriptive_name_for_XXL (up to 50 globals/constraints can be set) Xvar_1 is a regressor used in regress or xtreg previously Xvar_ref is a text name for the reference category descriptive_name is a descriptive text name of the dummy set hds97 [, weight(wgt_var_name)]

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 6March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 2c. RLS  Output created by (A) Original Regression (OLS, RE, FE etc) repeated (B) Each Dummy Variable Group using RLS is calculated - From “k-1” Dummy Variables: “k” Coefficients reported (C) Weighted Standard Deviation (Sampling Corrected) of RLS Betas - Measure of overall variation (D) F-Tests of Joint Significance - Are the dummy variables as a group significant (E) Sample Shares of each Dummy - What were the sample shares used to create the weighted average - From the weighted average, the deviations are calculated (see B)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 7March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3. Illustrative Example (in Handout)  American Current Population Survey (CPS) - Use freely available January 2004 CPS sample -  Run simple wage regression (age 18-65) - log hourly wages = f (age, gender, race, marital status, state)  Dummy Indicators - gender: male, female - race: white, black, other - marital status: married, divorced, separated, single - states: AK, AL… WY  Selecting arbitrary dummy variable as reference - Which one? Makes no difference in the calculation, just in interpretation  With RLS, interpret the dummy variables as deviations from a weighted average as opposed to an arbitrary reference category  If logged wages, then interpretation: %-point deviations from average  Use to implement RLS

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 8March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3. Sample Regression Output (in Handout) . regress lhw age genderm raceb raceo msmar msdiv mssep Source | SS df MS Number of obs = F( 7, 8409) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = lhw | Coef. Std. Err. t P>|t| [95% Conf. Interval] age | genderm | raceb | raceo | msmar | msdiv | mssep | _cons | . global hds97_1 genderm genderf gender. global hds97_2 raceb raceo racew race. global hds97_3 msmar msdiv mssep mssgl marital. hds97 descriptionName of reference

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 9March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3a. Gender (2-Way)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 10March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3b. Race (3-Way)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 11March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3c. Marital Status (4-Way)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 12March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3d. State of Residence (51-Way) Ref=Hi

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 13March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3d. State of Residence (51-Way) Ref=Lo

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 14March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 3d. State of Residence (51-Way)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung 15March 31, 2006Haisken-DeNew / Stata 2006 Mannheim 4. Conclusions  RLS: Interpretation of Dummy Variables - Even with a small dimension, RLS intuitive interpretation - Remove arbitrariness of reference category - Allow for importance weighting of each category  Easily Implemented with - Can be used after regress or xtreg and coefficients calculated - Useful additional statistics calculated  Flexible use - Transform a single set of dummy variables - Transform up to 50 sets of dummy variables at once  Areas of Application - Wage Differentials by: Region, Industry, Occupation, Education, Marital Status, Race, etc…