Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung Evolutionsstrategie I Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als.

Slides:



Advertisements
Ähnliche Präsentationen
Wurzelziehen ist das Gegenteil von quadrieren.. Beim Quadrieren berechnet man den Flächeninhalt eines Quadrats mit einer gegebenen Seitenlänge.
Advertisements

Perceptrons and the perceptron learning rule
PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 2. Vorlesung „Bionik I“
Mittlere absolute Abweichung vom Mittelwert(1)
Klaus Volbert 1 HEINZ NIXDORF INSTITUT Universität Paderborn Algorithmen und Komplexität Sommersemester 2004.
Drehmoment Drehmomentschlüssel r=0,4m F=50N r=0,2m F=100N Achtung:
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Dynamische Programmierung (2) Matrixkettenprodukt
Mittlere Geschwindigkeit
PowerPoint-Folien zur 8. Vorlesung „Bionik II / Biosensorik“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie I Handlungsregeln, die aus der nichtlinearen Theorie der (1 + 1) - ES folgen.
6. Vorlesung Evolutionsstrategie I
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel in der Minimalform { {
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung Evolutionsstrategie I Von der (1 + 1) - ES mit 1/5-Erfolgsregel zur (1, ) - ES mit mutativer Schrittweitenregelung.
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung Evolutionsstrategie II Die goldene Regel der Evolution, das größte kleine Sechseck und das Maximum-Minimum-Distanz-Problem.
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung Evolutionsstrategie I Auf dem Weg zu einer nichtlinearen Theorie Korridormodell, Kugelmodell und die.
Ingo Rechenberg PowerPoint-Folien zur 3. Vorlesung Evolutionsstrategie II Anwendungsfelder geschachtelter Evolutionsstrategien - Programmierung einer geschachtelten.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
Evolutionsstrategie II Praktikum SS10 Anmeldung mit Name und Matrikelnummer an: Termin des Praktikums wird nach Absprache mit.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 2. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung Evolutionsstrategie I Von der (1 + 1) - ES mit 1/5 - Erfolgsregel zur (1, ) - ES mit mutativer Schrittweitenregelung.
Ingo Rechenberg PowerPoint-Folien zur 2. Vorlesung Evolutionsstrategie II Der ES-Fortschritt im Quadrikgebirge und Kalkül der geschachtelten Evolutionsstrategien.
Messung des pH-Wertes von Weinsäure.
Ingo Rechenberg PowerPoint-Folien zur 2. Vorlesung Evolutionsstrategie II Auf dem Weg zu einer ES-Algebra - Kalkül der geschachtelten Evolutionsstrategien.
Histogramm/empirische Verteilung Verteilungen
Bruchrechenregeln Los geht´s Klick auf mich! Melanie Gräbner.
Moin. Ich benutze PPT 2002 und möchte drei Bilder nacheinander 1
Gleichungssysteme Galip Turan.
Effiziente Algorithmen Hartmut Klauck Universität Frankfurt SS
Beweissysteme Hartmut Klauck Universität Frankfurt WS 06/
§3 Allgemeine lineare Gleichungssysteme
Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Wintersemester.
Limited Local Search And Restart Nähere Betrachtungen.
Hallo Ich möchte einen Text einer Folie nicht einfach nur einfliegen lassen, sondern genau diesen Text, der schon an einer bestimmten Stelle steht, vergrößern.
Benjamins Vorschlag Hallo.... ich versuche in meiner Präsentation ein Bild, sagen wir mal eine gescannte Seite (Formular usw.) befindet sich auf der rechten.
Bereit ???? Nimm dir 10 Minuten Zeit. Ich versuche es dir zu erklären.
Schnittpunkt von zwei Geraden
Mehrfachausführungen Schleifen in VB 2010 ee. Programmidee: Der Anwender gibt eine Zahl ein, und das Programm gibt die Mehrfachen dieser Zahl aus (das.
Vom graphischen Differenzieren
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie I“ Auf dem Weg zu einer nichtlinearen Theorie Korridormodell, Kugelmodell und die.
Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“ Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als.
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie II“ Anwendungsfelder geschachtelter Evolutionsstrategien - Programmierung einer.
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 9. Vorlesung „Evolutionsstrategie I“ Finale Theorie der Evolutionsstrategie mit   Eltern und Nachkommen.
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“ Von der (1 + 1) - ES mit 1/5 - Erfolgsregel zur (1,  ) - ES mit mutativer Schrittweitenregelung.
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“ Nichtlineare Theorie der (1,  ) - Evolutionsstrategie Fortschritt und Erfolg.
Ingo Rechenberg PowerPoint-Folien zur 11. Vorlesung „Evolutionsstrategie I“ Sternstunden der Theorie der Evolutionsstrategie Vortrag in Jena anlässlich.
Ingo Rechenberg PowerPoint-Folien zur 3. Vorlesung „Evolutionsstrategie I“ Globale und lokale Optimumsuche Vier elementare Strategien auf dem Prüfstand.
Graphen.
Wir lösen Bruchgleichungen, deren Nenner eine Variable enthalten
Grundschule Oberasbach Siegbert Rudolph
 Präsentation transkript:

Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung Evolutionsstrategie I Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als Ergebnis der nichtlinearen Theorie

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel vergrößern für W e > 1 / 5 verkleinern für W e < 1 / 5 Für maximales

Mutationsschrittweite und Erfolgswahrscheinlichkeit Erfolge W e 0,49 = 1: 2,04 W e 0,16 = 1: 6,25 Höhenlinie +

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel vergrößern für W e > 1 / 5 verkleinern für W e < 1 / 5 auf die Länge 1 normiert

Wie normiert man einen Zufallsvektor auf die Länge 1 ? Wir erwürfeln die Komponenten und bestimmen die Länge Wir dividieren durch und erhalten die normierten Zufallzahlen Dann ist ! Frage: Wie groß ist für viele normalverteilte Zufallsszahlen Viele quadrierte Zufallszahlen addiert ergeben einen repräsentativen Mittelwert ? Aber für n >> 1 geht es noch viel einfacher, zu 1 zu machen

Normalverteilte Zufallszahlen z i für die Mutation der Variablen x i zizi w Wendepunkt der Kurve

P P Die Trefferwahrscheinlichkeitsdichte Ursprung der z -Koordinaten P P P P P P P

P P Zum radialen Strecken- Erwartungswert P P 3 Ursprung der z -Koordinaten

… Für n Dimensionen für n >> 1 Zur Schwankung der Länge Um also werden zu lassen, müssen wir setzen

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel vergrößern für W e > 1 / 5 verkleinern für W e < 1 / 5 auf die Länge 1 normiert

Achtung ! Die Normierung des Zufallsvektors auf die Länge 1 gilt nur für die Anwendung des ES-Algorithmus zur Lösung eines Optimierungsproblems. In den Formeln der Theorie der ES bleibt eine frei veränderliche Größe.

Wir nennen die Mutationsschrittweite Bisherige Formeln

Korridor Kugel Ergebnisse der nichtlinearen Theorie

Korridor Kugel Erweiterte Ergebnisse der nichtlinearen Theorie

ES-Suchschlauch im Korridor für n b2 b

ES-Suchschlauch im Kugelmodell für n 900 r Text

Allgemeines Suchbild der ES für n >> 1 sondern wegen Nicht so so Darwin lässt grüßen ! Ließe sich das Vorhandensein eines zusammengesetzten Organs nachweisen, das nicht durch zahlreiche aufeinander folgende geringe Abänderungen entstehen könnte, so müsste meine Theorie zusammenbrechen.

Algorithmus der (1 + 1) - ES mit 1/5-Erfolgsregel vergrößern für W e > 1 / 5 verkleinern für W e < 1 / 5 ? Wie stark müssen wir vergrößern bzw. verkleinern?

Zum Schrittweitenänderungsfaktor der (1 + 1) - ES für g = 1 Klettern mit max Für n / 0,202 >> 1 gilt Text

Die Schrittweiten müssen sich so ändern wie die Radien: Für k = 1 folgt Für optimales Fortschreiten ist also nach n Generationen um zu verkleinern. Bewährt hat sich = 1,3 – 1,5. Einstellregel

Algorithmus der (1 + 1) - ES mit 1/5-Erfolgsregel 1,3 für W e > 1 / 5 1,3 für W e < 1 / 5 Nach jeweils n Generationen

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel 1,5 für W e > 1 / 5 1,5 für W e < 1 / 5 Nach jeweils n Generationen

Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel Minimalform !

Idealisierter richtiger Ablauf einer (1+ 1)-ES-Optimierung Schrittweitenänderung Erfolg Misserfolg Erfolg Erfolgshäufigkeit ist richtig Keine Schrittweitenänderung ! Bei mehr Erfolgen wird mehr mit 1,3 multipliziert Bei mehr Misserfolgen wird mehr mit durch dividiert

Ein Minimalprogramm in M ATLAB zur Minimierung der Testfunktion Kugelmodell v=100; d=1; xe=ones(v,1); qe=sum(xe.^2); for g=1:1000 xn=xe+d*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qe qe=qn; xe=xn; d=d*1.3; else d=d/(1.3^0.25); end semilogy(g,qe,'b.') hold on; drawnow; end

Zurück zu den Fortschrittsformeln für das Korridor- und das Kugelmodell

Kugelmodell

Quasikonstante, wenn mit opt vorangeschritten werden soll Korridormodell für Korridormodell

Fortschrittsfenster der (1 + 1) - Evolutionsstrategie Evolutionsfenster

Ende

Genau genommen ist das gezeigte Konvergenzbild nur richtig, wenn sich die Hyper- kugel in Richtung Startelter Kugelzentrum geringfügig zu einem Ellipsoid verformt. Bei einer exakten Kugel sind die Kugelschalen selektionsneutral. Ähnlich wie beim evolutionsstrategischen Beklettern einer ansteigenden Ebene eine Seitwärtsdrift eintritt, wird bei der exakten Kugel ein Umfangsdrift stattfinden. Der Suchschlauch wird sich also spiralförmig dem Kugelzentrum nähern.

Idee der Theorie: Es ist das Kugelmodell, das eine besonders starke Anpassung der Mutationsschritt- weite erfordert. Die Schrittweite muss sich in dem Maße verkleinern, wie der Zielab- stand während des Fortschreitens abnimmt. Wir können die Verkleinerung des Ziel- abstands pro Generation in die mathematische Form (r (g) – r (g+1) ) /1 bringen. Diese mittlere Zielabstandsverkleinerung soll nun den größten Wert annehmen; das heißt wir setzen sie gleich max. Wir wiederholen die Gleichsetzung für k·n Generations- schritte (k =1, 2,...) Wir setzen am Ende der Rechnung willkürlich k = 1. Es bedeu- tet, dass die errechnete Schrittweitenverkleinerung erst nach n Generation ausge- führt werden darf. Der Faktor (Schittweitenänderungsfaktor genannt) gibt an, mit welchen Wert größer als 1 die Mutationsschrittweite multipliziert werden muss, wenn die Erfolgswahrscheinlichkeit größer als 1/5 ist. Umgekehrt muss durch dividiert werden, wenn die Erfolgswahrscheinlichkeit kleinen als 1/5 ist.