Ingo Rechenberg PowerPoint-Folien zur 9. Vorlesung Evolutionsstrategie I Fortschrittstheorie der (1, ) – Evolutionsstrategie am Kugelmodell.

Slides:



Advertisements
Ähnliche Präsentationen
PowerPoint-Folien zur 2. Vorlesung „Bionik I“
Advertisements

LS 2 / Informatik Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Maschinelles Lernen   Präsenzübung.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Anwendung und Visual Basic
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
Mittelwert, Median, Quantil
Prof. Dr. Bernhard Wasmayr
PowerPoint-Folien zur 8. Vorlesung „Bionik II / Biosensorik“
PowerPoint-Folien zur 2. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie I Handlungsregeln, die aus der nichtlinearen Theorie der (1 + 1) - ES folgen.
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 1. Vorlesung „Evolutionsstrategie II“
6. Vorlesung Evolutionsstrategie I
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung Evolutionsstrategie I Vier elementare Optimierungsstrategien auf dem Prüfstand.
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Algorithmus der (1 + 1) – ES mit 1/5-Erfolgsregel in der Minimalform { {
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung Evolutionsstrategie I Von der (1 + 1) - ES mit 1/5-Erfolgsregel zur (1, ) - ES mit mutativer Schrittweitenregelung.
PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 1. Vorlesung Evolutionsstrategie II Vom Kugelmodell zum Quadrikmodell - Die quadratische ES-Fortschrittstheorie.
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung Evolutionsstrategie II Die goldene Regel der Evolution, das größte kleine Sechseck und das Maximum-Minimum-Distanz-Problem.
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
PowerPoint-Folien zur 9. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung Evolutionsstrategie I Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als.
Ingo Rechenberg PowerPoint-Folien zur 4. Vorlesung Evolutionsstrategie II Das Wunder der sexuellen Fortpflanzung - Theorie der rekombinativen ES.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
Evolutionsstrategie II Praktikum SS10 Anmeldung mit Name und Matrikelnummer an: Termin des Praktikums wird nach Absprache mit.
PowerPoint-Folien zur 3. Vorlesung „Bionik I“
PowerPoint-Folien zur 9. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 6. Vorlesung Evolutionsstrategie II Theorie: Vom Kugelmodell zum Gratmodell Nachgerechnet: Von der Urbakterie zum.
PowerPoint-Folien zur 2. Vorlesung „Evolutionsstrategie II“
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung Evolutionsstrategie I Von der (1 + 1) - ES mit 1/5 - Erfolgsregel zur (1, ) - ES mit mutativer Schrittweitenregelung.
Ingo Rechenberg PowerPoint-Folien zur 2. Vorlesung Evolutionsstrategie II Der ES-Fortschritt im Quadrikgebirge und Kalkül der geschachtelten Evolutionsstrategien.
Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Prof. Dr. Bernhard Wasmayr VWL 2. Semester
Ingo Rechenberg PowerPoint-Folien zur 2. Vorlesung Evolutionsstrategie II Auf dem Weg zu einer ES-Algebra - Kalkül der geschachtelten Evolutionsstrategien.
102/2006Data classification: Public SPG Marketing Europe / ITS Ihr Partner für Bahn Projekte.
Eine Einführung in die CD-ROM
Referent: Ralf Wollenberg 06/2009
Where Europe does business Lück, JDZB | Seite © GfW NRW 252 a.
- Organisatorisches: Termine
Aufgabensammlung Thermodynamik Frank-Michael Barth ISBN: © 2014 Oldenbourg Wissenschaftsverlag GmbH Abbildungsübersicht / List of Figures.
Automation and Drives Ablösestrategie ET 200L-SC, Norbert Brousek, A&D AS FA PS 2 Juli 2005; Folie 1 Ablösestrategie ET 200L-SC ET 200 S COMPACTET 200.
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Eine lllustration der Herausforderungen des Stromsystems der Zukunft
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
Folie Beispiel für eine Einzelauswertung der Gemeindedaten (fiktive Daten)
11. Sachbericht | Festausschuss | © Sascha Höcker 1. Sachbericht des Festausschusses 2013 © Sascha Höcker.
IKALDO GmbH Problemlösung mittels Qualitätstechniken Q7 | M7
Projekt Messendorferstraße Graz TOP 1-33 /EG Wohnhaus 1 Grundstück 2 Schlafen10,28 m² Wohnen /Kochen 15,35 m² Diele 2,50 m² Bad mit WC 4,40m² Terrasse.
Gewerkschaft Erziehung und Wissenschaft Überleitung zum TV-H Beispiele.
Folie Einzelauswertung der Gemeindedaten
Ingo Rechenberg PowerPoint-Folien zur 5. Vorlesung „Evolutionsstrategie I“ Finale der Theorie der zweigliedrigen Evolutionsstrategie Handlungsregeln als.
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 4. Vorlesung „Evolutionsstrategie II“
PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“
PowerPoint-Folien zur 10. Vorlesung „Evolutionsstrategie I“
Ingo Rechenberg PowerPoint-Folien zur 9. Vorlesung „Evolutionsstrategie I“ Finale Theorie der Evolutionsstrategie mit   Eltern und Nachkommen.
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung „Evolutionsstrategie I“ Von der (1 + 1) - ES mit 1/5 - Erfolgsregel zur (1,  ) - ES mit mutativer Schrittweitenregelung.
Ingo Rechenberg PowerPoint-Folien zur 8. Vorlesung „Evolutionsstrategie I“ Nichtlineare Theorie der (1,  ) - Evolutionsstrategie Fortschritt und Erfolg.
Ingo Rechenberg PowerPoint-Folien zur 11. Vorlesung „Evolutionsstrategie I“ Sternstunden der Theorie der Evolutionsstrategie Vortrag in Jena anlässlich.
 Präsentation transkript:

Ingo Rechenberg PowerPoint-Folien zur 9. Vorlesung Evolutionsstrategie I Fortschrittstheorie der (1, ) – Evolutionsstrategie am Kugelmodell

D ARWIN s Denkschema in maximaler Abstraktion Genauere Nachahmung der biologischen Evolution

Basis-Algorithmus der (1, ) - Evolutionsstrategie

mit Ergebnis der linearen Theorie Tabelle der Fortschrittsbeiwerte 10 20, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,2414 Fortschrittsbeiwert

Von der linearen Theorie zur nichtlinearen Theorie lin kug

a Für q << r darf a auf x 1 projiziert werden Mutation der Variablen x 2 bis x n Der bis auf x 1 mutierte Nachkomme N erleidet den Rückschritt a Eine geometrische Betrachtung für n >> 1

Bestimmung von Dimensionsloser Fortschritt

Tabelle des maximalen Fortschritts 20, , , , , , , , , ,2535 parallel

Tabelle des maximalen Fortschritts 20,15920, ,35810, ,52980, ,67620, ,80290, ,18390, ,74370, ,52920, ,14400, ,25350,0053 parallel seriell 0,1352 Maximum

Optimale Erfolgswahrscheinlichkeit 20,15920,07960,393 30,35810,11940,341 40,52980,13250,309 50,67620,13520,286 60,80290,13380, ,18390,11840, ,74370,08720, ,52920,05060, ,14400,03140, ,25350,00530,053 parallel seriell 0,1352

Das dimensionslose Fortschrittsgesetz mitund folgt das zentrale Fortschrittsgesetz Dimensionslose Fortschrittsgeschwindigkeit Dimensionslose Schrittweite

Algorithmus der (1, ) – Evolutionsstrategie mit MSR !

Methoden zur Erzeugung der Zufallszahlen Für gerade (z. B. = 10) Für durch 3 teilbar (z. B. = 9) Für beliebig (im Programmiermodus) IF RND <.5 THEN i = ELSE i = 1/

M ATLAB -Programm der (1 + 1) ES v=100; d=1; xe=ones(v,1); qe=sum(xe.^2); for g=1:1000 xn=xe+d*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qe qe=qn; xe=xn; d=d*1.3; else d=d/(1.3^0.25); end semilogy(g,qe,'b.') hold on; drawnow; end Zur Erinnerung

M ATLAB -Programm der (1, ) ES

v=100; de=1; xe=ones(v,1); Variablenzahl und Startwerte für Schrittweite und Variablen- werte des Start-Elters

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 end Erzeugen der Generationenschleife

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; end Initialisierung der Qualität im Bestwert-Zwischenspeicher auf nicht verschlechterbaren Wert

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 end Generierung der Nachkommenschleife

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 if rand < 0.5 dn=de*1.3; else dn=de/1.3; end end end Deterministische Variation der Mutationsschrittweite

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 if rand < 0.5 dn=de*1.3; else dn=de/1.3; end xn=xe+dn*randn(v,1)/sqrt(v); end end Erzeugung eines mutierten Nachkommen

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 if rand < 0.5 dn=de*1.3; else dn=de/1.3; end xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); end end Bestimmung der Qualität des mutierten Nachkommen

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 if rand < 0.5 dn=de*1.3; else dn=de/1.3; end xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end end Bei Q-Verbesserung Zwischen- speicherung der Qualität, Schritt- weite und Variablenwerte

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 if rand < 0.5 dn=de*1.3; else dn=de/1.3; end xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end qe=qb; de=db; xe=xb; end Nachkomme aus dem Bestwert- Zwischenspeicher wird zum Elter der nächsten Generation

M ATLAB -Programm der (1, ) ES v=100; de=1; xe=ones(v,1); for g=1:1000 qb=1e+20; for k=1:10 if rand < 0.5 dn=de*1.3; else dn=de/1.3; end xn=xe+dn*randn(v,1)/sqrt(v); qn=sum(xn.^2); if qn < qb qb=qn; db=dn; xb=xn; end qe=qb; de=db; xe=xb; semilogy(g,qe,'b.') hold on; drawnow; end Darstellung der Qualität als Funktion der Generationszahl

Drei Fragen zu Beginn eines ES-Experiments 1. Frage nach dem Startpunkt ? 2. Frage nach der Startschrittweite ? 3. Frage nach der Versuchsdauer ?

Abstand D zweier Zufallspunkte im Quadrat im Hyperkubus D sehr verschieden D nahezu konstant Eine Zwischenbetrachtung

Theorie: Abstand zweier Zufallspunkte X und Y im Hyperkubus l l l D

Simulation im 600-dimensionalen Hyperwürfel der Kantenlänge l = 20 D 1 =198,23 D 2 =201,25 D 3 =199,61 D 4 =209,62 D 5 =205,05

Theorie: Abstand zweier Zufallspunkte X und Y im Hyperkubus l l l D Wir deuten einen Zufallspunkt als Start und den anderen Zufallspunkt als Ziel der Optimierung Start Ziel

Kantenlänge des Hyperwürfels = l Zufallsstart

Zur Ableitung der Generationsformel Es möge immer im Maximum laufen folgt Aus Erlaubter relativer Fehler

Ende