Institut für Kartographie und Geoinformation Diskrete Mathematik I Vorlesung 6 18.11.99 -Bäume-

Slides:



Advertisements
Ähnliche Präsentationen
8. Termin Teil B: Wiederholung Begriffe Baum
Advertisements

Randomisierte Algorithmen Präfix Suche und Konsistentes Hashing
1. 2 Untersuchungsdesign Zielgruppe:Bevölkerung ab 14 Jahre Befragungsgebiet:Land Brandenburg Stichprobe:Soll:3.000 Befragte Ist:3.052 Befragte Auswahl:telefonische.
Claudio Moraga; Gisbert Dittrich
B-Bäume.
7. Natürliche Binärbäume
R. Der - Vorlesung Algorithmen und Datenstrukturen (Magister)
Trimino zum Kopf- oder halbschriftlichen Rechnen
Standortfaktoren INTERN - Ausdrucksstark präsentieren.
Der Einstieg in das Programmieren
WS Algorithmentheorie 05 - Treaps Prof. Dr. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (19 - Analyse natürlicher Bäume) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (17 – Bäume: Grundlagen und natürliche Suchbäume) Prof. Th. Ottmann.
Algorithmen und Datenstrukturen
Rechneraufbau & Rechnerstrukturen, Folie 3.1 © 2006 W. Oberschelp, G. Vossen.
Grundkurs Theoretische Informatik, Folie 3.1 © 2004 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 3 Gottfried Vossen Kurt-Ulrich Witt.
© 2006 W. Oberschelp, G. Vossen Rechneraufbau & Rechnerstrukturen, Folie 4.1.
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Kapitel 9 Claudio Moraga; Gisbert Dittrich FBI Unido
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
Diskrete Mathematik I Vorlesung Arrays-
Institut für Kartographie und Geoinformation Dipl.-Ing. J. Schmittwilken Diskrete Mathe II Übung
Institut für Kartographie und Geoinformation Dipl.-Ing. J. Schmittwilken Diskrete Mathe II Übung
Diskrete Mathematik I Vorlesung 6 Binärer Suchbaum II.
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik I Vorlesung Listen-
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II Vorlesung In welcher Masche liegt der Punkt p?
Kapitel 19 Astronomie Autor: Bennett et al. Unsere Galaxis, die Milchstraße Kapitel 19 Unsere Galaxis, die Milchstraße © Pearson Studium 2010 Folie: 1.
Inhalte und Maßnahmen eingegeben haben,
Ralf KüstersDagstuhl 2008/11/30 2 Ralf KüstersDagstuhl 2008/11/30 3.
Bild 1.1 Copyright © Alfred Mertins | Signaltheorie, 2. Auflage Vieweg+Teubner PLUS Zusatzmaterialien Vieweg+Teubner Verlag | Wiesbaden.
Diskrete Mathe 9 Vorlesung 9 SS 2001
7.1 Externes Suchen Bisherige Algorithmen: geeignet, wenn alle Daten im Hauptspeicher. Große Datenmengen: oft auf externen Speichermedien, z.B. Festplatte.
...ich seh´es kommen !.
Geoinformation II Vorlesung 2 SS 2001 AVL-Bäume.
Diskrete Mathematik II
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II Vorlesung 7 SS 2000 Punkt-in-Polygon-Verfahren I (Trapezkarte)
Einführung in die Informatik für Naturwissenschaftler und Ingenieure
Übung Datenbanksysteme II Index- strukturen
Präsentation läuft auch vollautomatisch ab … wie du möchtest
Auslegung eines Vorschubantriebes
1 DMS EXPO 2009 Keynote Angst und Gier Dr. Ulrich Kampffmeyer PROJECT CONSULT Unternehmensberatung Dr. Ulrich Kampffmeyer GmbH Breitenfelder Straße 17.
Binäre Bäume Louis Moret und Reto Huber, 5. 11
WS 2009/10 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #3 Das relationale Modell (Teil 2)
WEKA MEDIA GmbH & Co. KG Technische Hilfeleistung ENDE HILFE Folien p.de.
Vorlesung Binärer Suchbaum II-
Vorlesung Mai 2000 Konstruktion des Voronoi-Diagramms II
Graphen und Bäume.
Managemententscheidungsunterstützungssysteme (Ausgewählte Methoden und Fallstudien) ( Die Thesen zur Vorlesung 3) Thema der Vorlesung Lösung der linearen.
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Analyseprodukte numerischer Modelle
2014 Januar 2014 So Mo Di Mi Do Fr Sa So
SWE1 / Übung 10 ( ) Rekursion Binärbäume.
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Pflanzenlernkartei 3 Autor: Rudolf Arnold. Pflanze 1 Gattung Merkmale Schädigung Bekämpfung.
Pflanzenlernkartei 2 Autor: Rudolf Arnold. Pflanze 1 Gattung Merkmale Schädigung Bekämpfung.
Vortrag von Rechtsanwältin Verena Nedden, Fachanwältin für Steuerrecht zur Veranstaltung Wege zum bedingungslosen Grundeinkommen der Piratenpartei Rhein-Hessen.
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Vorlesung 6 SS 2001 Segmentschnitt III.
Der Erotik Kalender 2005.
01-1-Anfang. 01a-1-Vortrag-Inhalt 14-4-Gründe-Masterplan.
Familie Beutner, Konrad-Voelckerstrasse, Edenkoben/Pfalz, Tel:
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Geoinformation II 6. Sem. Vorlesung April 2000 AVL-Bäume.
Binärer Suchbaum IV AVL-Baum I
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik I Vorlesung Binärer Suchbaum III- -AVL-Baum-
Binärer Baum, Binärer Suchbaum I
Institut für Kartographie und Geoinformation Diskrete Mathematik I Vorlesung Binärer Suchbaum I-
Diskrete Mathematik I Vorlesung 7 Binärer Suchbaum III.
Binärbäume.
Vorlesung AVL-Bäume/Algorithmen-
 Präsentation transkript:

Institut für Kartographie und Geoinformation Diskrete Mathematik I Vorlesung Bäume-

2 Übersicht Eine neue rekursive Datenstruktur: Bäume –Der Binäre Baum –Binärer Suchbaum Definition Beispiel

3 Der Binäre Baum Ein leerer Baum ist ein binärer Baum Sind L und R zwei binäre Bäume und w ein Knoten mit dem Inhalt n, dann ist die Verknüpfung von w, L und R ein binärer Baum. n LR

4 Binärer Suchbaum Ein binärer Baum B ist ein binärer Suchbaum, falls er leer ist oder die folgenden Eigenschaften erfüllt sind: –die beiden Unterbäume sind binäre Suchbäume –die Beschriftungen der Knoten des linken Suchbaums sind kleiner als die Beschriftung der Wurzel –die Beschriftungen des rechten Suchbaums sind größer als die Beschriftung der Wurzel n <n<n>n>n

Binärer Suchbaum Aufbau eines binären Suchbaums aus folgenden Elementen:

8 4<

11 17>

14 13>

15 13<

18 2<

19 24 >

22 23>

23 >

26 7<

<

Schönen Dank für Ihre Aufmerksamkeit und Auf Wiedersehen