Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen

Slides:



Advertisements
Ähnliche Präsentationen
Eulerscher Polyedersatz
Advertisements

Der Urknall und die ersten drei Minuten.
Expansion+Dunkle-Energie.ppt AC-Rathaus, 2. Februar 2006 J. Jersák,
Vorlesung 28: Roter Faden: Heute:
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
Kosmologie mit Supernovae 1a
Dunkle Energie- ein kosmisches Rätsel Dunkle Energie –
Anthropisches Prinzip
Robertson-Walker Metrik
Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel.
Standortfaktoren INTERN - Ausdrucksstark präsentieren.
Kosmischer Ursprung und Zeitentwicklung der von der Menschheit genutzten Energie E. Rebhan, Inst. f. Theor. Physik, Heinrich-Heine-Universität Düsseldorf.
Einteilung der VL Hubblesche Gesetz Gravitation
Vorlesung 19: Roter Faden: Heute: Scheinkräfte: Zentrifugalkraft
Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART)
Vorlesung 5: Roter Faden: 1. Temperaturentwicklung des Universums
Vorlesung 11: Roter Faden: Horizontproblem 2. Flachheitsproblem
Vorlesung 9: Roter Faden:
Vorlesung 9: Roter Faden: Franck-Hertz Versuch
Vorlesung 11: Roter Faden: Horizontproblem 2. Flachheitsproblem
Die Urknalltheorie Einleitung Was besagt die Theorie?
Vorlesung 27: Roter Faden: Heute: Flüssigkeiten Versuche: Schweredruck
20 Januar 2004 Physik I, WS 03/04, Prof. W. de Boer 1 1 Vorlesung 24: Roter Faden: Heute: Relativistische Mechanik Versuche: Michelson-Morley Experiment,
Die Temperaturentwicklung des Universums
18 Dezember 2003 Physik I, WS 03/04, Prof. W. de Boer 1 1 Vorlesung 20: Roter Faden: Heute: Schwingungen mit Dämpfung Versuche: Computersimulation.
Vorlesung 1: Roter Faden: 1.Ausblick 2.Literatur
Dunkle Materie / Dunkle Energie
Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation
14. November 2008 Kosmologie, WS 08/09, Prof. W. de Boer 1 Vorlesung 3: Roter Faden: 1.Wiederholung 2.Abstoßende Gravitation 3.Licht empfindet Gravitation.
18 Jan 2008 Kosmologie, WS07/08, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung 2. Neutrino Oszillationen-> Neutrino Massen.
Vorlesung 9: Roter Faden: 1. Neutrino Oszillationen-> Neutrino Massen 2. Neutrino Hintergrundstrahlung -> DM? Universum besteht aus: Hintergrundstrahlung:
1.Hubblesches Gesetz: v = H d 2.Wie mißt man Geschwindigkeiten?
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
27 Nov Kosmologie, WS 08/09, Prof. W. de Boer 1 Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART) 2. Temperaturentwicklung des Universums.
Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation
Vorlesung 10: Roter Faden: Horizontproblem 2. Flachheitsproblem
Welche Struktur hat das Universum?
AC Analyse.
AC Analyse. 2Ausgewählte Themen des analogen Schaltungsentwurfs Sprungantwort.
Wir suchen ‘ mit m = m    ‘ c  ‘ mod 26
Strukturbildung im Universum
Ralf KüstersDagstuhl 2008/11/30 2 Ralf KüstersDagstuhl 2008/11/30 3.
Vom Anfang und Ende des Universums
Bestandteile des Kosmos
Friedmann Modell des Universums
Die Entwicklung unseres Universums...
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Evolution in der Physik Zwei Bedeutungen eines Begriffs
Die beschleunigte Expansion
Die „dunkle“ Seite der Kosmologie
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL 0. Einführung Hubblesche Gesetz Gravitation
VL7 VL6. Elemente der Quantenmechanik I
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
VL 20 VL Mehrelektronensysteme VL Periodensystem
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Fernsehschüssel, womit man
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Wim de Boer, Karlsruhe Atome und Moleküle, VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL 23.
Auslegung eines Vorschubantriebes
Pflanzenlernkartei 3 Autor: Rudolf Arnold. Pflanze 1 Gattung Merkmale Schädigung Bekämpfung.
Pflanzenlernkartei 2 Autor: Rudolf Arnold. Pflanze 1 Gattung Merkmale Schädigung Bekämpfung.
Wellen zeigen Teilchen Eigenschaft
Gravitation regiert die Welt
Newton‘sche Gravitation
Das inflationäre Universum
Gekrümmter Raum, gekrümmte Zeit!
Wellen zeigen Teilchen Eigenschaft
 Präsentation transkript:

Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen Evolution des Universums in der ART Roter Faden: Evolution des Universums

Friedmannsche Gl. und Newtonsche Mechanik Die Friedmannsche Gleichungen der ART entsprechen Newtonsche Mechanik + Krümmungsterm k/S2 + E=mc2 (oder u=c2) + Druck ( Expansionsenergie im heißem Univ.) + Vakuumenergie (=Kosmologische Konstante) Dies sind genau die Ingredienten die man braucht für ein homogenes und isotropes Universum, das evtl. heiß sein kann (Druck ≠ 0)

Heute: diese Zeit ausrechnen unter Berücksich- tigung der Dunklen Energie Aus Geschwindigkeitsmessungen kann man Vergangenheit und Zukunft des Universums rekonstruieren. Vergleiche mit Tennisball: wodurch wird er abgebremst? Schwerkraft oder Gravitation. Wenn mann Geschwindigkeiten entlang Bahn misst, kann man Zeitpunkt des Anfangs bestimmen Und berechnen wann er wieder zur Erde zurueckkehrt oder auch ob er ins Weltall verschwinden wird. So auch bei Messung der Geschwindigkeiten der Galaxien. Man kann fruehere Expansionsgeschwindigkeiten messen aus SN explosionen, deren Licht uns erst jetzt erreicht. Aus Dopplerverschiebung des Lichts dieser SN kann mann Geschwindigkeit bestimmen. Aus Helligkeit Kann man den Abstand bestimmen. Man findet eine beschleunigte Expansion, d.h. Expansion des Universums wird nicht nur durch Gravitation abgebremst, sondern erfaehrt auch eine Beschleunigung, wie z.b. Heliumballon durch die Erde angezogen wird, aber gleichzeitig durch die Wechselwirkung mit der umgebende Luft nach oben fliegt. Fuer einen Mondbewohner oder Astronaut im Weltall wuerde diese nach oben fliegende Heliumballon eine abstossende Gravitation bedeuten. Welche Wechselwirkung das Universum so eine beschleunigte Expansion erfahren laesst, ist nicht klar. Wir nennen es DE. Diese Energie macht ca. 73% der Energie des Universums aus.

Zum Mitnehmen Friedmann-Lemaitre Feldgleichungen beschreiben Evolution eines homogenen und isotropen Universums. Daraus folgt mit p = α c2 : (t)  S(t) -3(1+α) S(t)  t 2/3(1+α) 2. Wenn Strahlung dominiert ( α = 1/3 ), dann gilt: S(t) = k0 t ½ 3. Wenn Materie dominiert (α = 0 ), dann gilt: S(t) = k1 t 2/3 4. Wenn Vakuumenergie dominiert ( = k), dann gilt: S(t) = k2 eHt (exponentielle Zunahme (Inflation) mit H = konstant) 5. Alter des Universums für  = 0.7: t  1/H0 14 .109 yr statt t= 2/3H0 10 .109 yr (älteste Galaxien > 13 .109 yr !)

Minkowski 4-dimensionale Raum-Zeit

Metrik = Vorschrift zur Längenmessung

Mathematische Beschreibung der Krümmung

Krümmung im 3-dim. Raum -> 4. Koordinate -> 4-dim. Euklidischer Raum

Robertson-Walker Metrik = Metrik in 4D-comoving coor. Für ein homogenes und isotropes Universum gilt: Metrik unabh. von ,θ, d.h. d = dθ = 0

Längen im gekrümmten Raum

Friedmann Gleichungen

Erste Friedman Gleichung nach Newton v =Friedmann für k=-2E/m Dimensionslose Dichteparameter:

Berücksichtigung der Expansionsenergie (1) (2) Differenziere (1) und benutze u=c2 ergibt die zweite Friedm. Gl dE=-pdV oder dE/dt = -p dV/dt - dV dp/dt Letzter Term doppelter Differentialterm, daher vernachlässigbar.

Kosmologische Konstante p

Kosmologische Konstante

Energieerhaltung aus Friedmann Gl.

Zeitentwicklung der Dichte

Zeitentwicklung der Dichte

Zeitentwicklung des Universums

Zeitentwicklung des Universums

Wie groß ist das sichtbare Universum für =1? Jetzt mit S(t) = kt2/3(1+) Daraus folgt:  =  d =  dt / S(t) oder mit S(t) = kt2/3(1+)  = c d = c1/ kt2/3(1+)dt = (3+3)/(1+3  )(c/k) t(1+3  ) /(3 +3 ) Oder R0= S(t)  = (3+3 )/(1+3 ) c t0 = 3ct0 für =0 (Materiedominanz) ct0 für =1/3 (Strahlungsdominanz) 0 ct0 für =-1 (Vakuumenergie) Wie berechnet man R0 für Kombination aller drei???? Nützlich: berechne nicht alles als Fkt. von S und t, sondern H und z, denn dies sind die beobachteten Größen. Beachte: Wellenlänge skaliert mit S!! D.h. 1+z=λobs/λemit=S0/S. ODER BEI z=1 war das Univ. nur halb so groß, bei z=1000 1/1000.

Inflation bei konstantem 0 Oder S(t) e t/ mit Zeitkonstante  = 1 /H Alter des Univ., d.h.beschleunigte Expansion durch Vakuumenergie jetzt sehr langsam, aber zum Alter t10-36s sehr schnell! Dieser Inflationsschub am Anfang, die durch die Symmetriebrechung einer vereinheitlichter “Urkraft”, wie durch GUT’s (Grand Unified Theories) vorhergesagt, ist die einzige Erklärung warum Univ. so groß ist und soviel Materie hat.

Alter des Universums mit  ≠ 0

Alter des Universums mit  ≠ 0

Alter des Universums mit  ≠ 0

Zum Mitnehmen Friedmann-Lemaitre Feldgleichungen beschreiben Evolution eines homogenen und isotropen Universums. Daraus folgt mit p = α c2 : (t)  S(t) -3(1+α) S(t)  t 2/3(1+α) 2. Wenn Strahlung dominiert ( α = 1/3 ), dann gilt: S(t) = k0 t ½ 3. Wenn Materie dominiert (α = 0 ), dann gilt: S(t) = k1 t 2/3 4. Wenn Vakuumenergie dominiert ( = k), dann gilt: S(t) = k2 eHt (exponentielle Zunahme (Inflation) mit H = konstant) 5. Alter des Universums für  = 0.7: t  1/H0 14 .109 yr statt t= 2/3H0 10 .109 yr (älteste Galaxien > 13 .109 yr !)