Einteilung der VL Hubblesche Gesetz Gravitation

Slides:



Advertisements
Ähnliche Präsentationen
Der Urknall und die ersten drei Minuten.
Advertisements

Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
Kosmologie mit Supernovae 1a
Dunkle Energie- ein kosmisches Rätsel Dunkle Energie –
Dunkle Energie- ein kosmisches Rätsel Dunkle Energie –
Robertson-Walker Metrik
Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel.
Der Physik Nobelpreis 2006 John C. Mather (links) und George Smoot (rechts). 1.Vorlesung Teilchenphysik WiSemester 06/07 Michael Kobel.
Unser modernes kosmologisches Weltbild
Vorlesung 19: Roter Faden: Heute: Scheinkräfte: Zentrifugalkraft
Eigenschaften des Photons
Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART)
Vorlesung 5: Roter Faden: 1. Temperaturentwicklung des Universums
Vorlesung 8 Roter Faden: 1. Entstehung der Galaxien-> Materie nur
Vorlesung 11: Roter Faden: Horizontproblem 2. Flachheitsproblem
Vorlesung 9: Roter Faden:
Vorlesung 9: Roter Faden: Franck-Hertz Versuch
Vorlesung 18: Roter Faden: Röntgenstrahlung
Die Urknalltheorie Einleitung Was besagt die Theorie?
20 Januar 2004 Physik I, WS 03/04, Prof. W. de Boer 1 1 Vorlesung 24: Roter Faden: Heute: Relativistische Mechanik Versuche: Michelson-Morley Experiment,
Vorlesung 1: Roter Faden: 1.Ausblick 2.Literatur
Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation
14. November 2008 Kosmologie, WS 08/09, Prof. W. de Boer 1 Vorlesung 3: Roter Faden: 1.Wiederholung 2.Abstoßende Gravitation 3.Licht empfindet Gravitation.
18 Jan 2008 Kosmologie, WS07/08, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung 2. Neutrino Oszillationen-> Neutrino Massen.
Vorlesung 9: Roter Faden: 1. Neutrino Oszillationen-> Neutrino Massen 2. Neutrino Hintergrundstrahlung -> DM? Universum besteht aus: Hintergrundstrahlung:
1.Hubblesches Gesetz: v = H d 2.Wie mißt man Geschwindigkeiten?
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
27 Nov Kosmologie, WS 08/09, Prof. W. de Boer 1 Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART) 2. Temperaturentwicklung des Universums.
Fernsehschüssel, womit man
Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation
Vorlesung 1: Roter Faden: 1.Ausblick 2.Literatur
Vorlesung 10: Roter Faden: Horizontproblem 2. Flachheitsproblem
Plädoyer für ein modifiziertes Kraftgesetz
Bewegte Bezugssysteme
Energieerhaltung Annette Eicker
Das Keplerproblem (Teil 3)
Elementarteilchenphysik/Astroteilchenphysik Seminarthemen Organisation
Physik am Samstagmorgen 2007 – Physik und...
Bestandteile des Kosmos
GUT, Inflation, erste Teilchen
Bild 1.1 Copyright © Alfred Mertins | Signaltheorie, 2. Auflage Vieweg+Teubner PLUS Zusatzmaterialien Vieweg+Teubner Verlag | Wiesbaden.
Friedmann Modell des Universums
Galaxien und ihre Entfernungsbestimmung
Wim de Boer, Karlsruhe Kosmologie VL, Einteilung der VL 1.Einführung 2.Hubblesche Gesetz 3.Antigravitation 4.Gravitation 5.Entwicklung des.
Die Allgemeine Relativitätstheorie
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Die beschleunigte Expansion
Die „dunkle“ Seite der Kosmologie
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL 0. Einführung Hubblesche Gesetz Gravitation
Vorlesung 18: Roter Faden: Röntgenstrahlung
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
VL 20 VL Mehrelektronensysteme VL Periodensystem
VL 8 VL8. Das Wasserstoffatom in der Klass. Mechanik
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Fernsehschüssel, womit man
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Eigenschaften des Photons
Raum, Zeit und Raumzeit Franz Embacher
Jeder hat schon einmal von ihnen gehört, aber keiner hat sie jemals gesehen: Schwarze Löcher Ich möchte mit Euch über ein Thema reden, was eigentlich gar.
Die Allgemeine Relativitätstheorie
Die kosmische Hintergrundstrahlung
Gravitation regiert die Welt
Gravitationstheorie: nach Newton und nach Einstein
Gekrümmter Raum, gekrümmte Zeit!
Didaktik der Relativitätstheorie
Eine kleine Einführung
 Präsentation transkript:

Einteilung der VL Hubblesche Gesetz Gravitation Evolution des Universum Temperaturentwicklung Kosmische Hintergrundstrahlung CMB kombiniert mit SN1a Strukturbildung Neutrinos Grand Unified Theories -13 Suche nach DM

Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation Licht empfindet Gravitation Krümmung des Universums Grundlagen der ART

Hubblesches Gesetz in “comoving coordinates” Beispiel: D = S(t) d (1) Diff, nach Zeit D = S(t) d (2) oder D = v = S(t)/S(t) D Oder v = HD mit H = S(t)/S(t) Oder mit z=v/c cz=Hr (D=r in Kugelkoor.) Oder (Taylor Entwicklung) r=c/H(z+1/2(1-q0)z2) wenn Abweichungen des linearen Hubbleschen Gesetzes durch Brems- parameter q parametrisiert werden. d D = S(t) d S(t) = zeitabhängige Skalenfaktor, die die Expansion berücksichtigt. Durch am Ende alle Koordinaten mit Skalenfaktor zu multiplizieren, kann ich mit einem festen (comoving) Koordinatensystem rechnen.

Zeitabhängigkeit des Skalenfaktors S(t) bei =1 r  S(t) und   1/r3  E=0 (flaches Universum) 

Bremsparameter q0 Aus einer Taylor-Entwicklung: S(t)=S(t0)-S `(t0)(t-t0)-½ S ``(t0)(t-t0)2) kann mann herleiten: Siehe Bergstrom and Goobar Der Bremsparameter q0 ist definiert durch q=-(S”S/S’2) Für S t 2/3 gilt: q0 = 0.5 (q>-1, Beschleunigung 0; q=0 Beschleunigung <0, q>0; Beschleunigung >0, q<0 ) Experimentell: q=-0.6±0.02: abstoßende Gravitationskraft

Hubble Diagramm aus SN Ia Daten Abstand aus dem Hubbleschen Gesetz mit neg. Bremsparameter q0=-0.6 und H=0.7 (100 km/s/Mpc) z=1-> r=c/H(z+1/2(1-q0)z2)= 3.108/(0.7x105 )(1+0.8) Mpc = 7 Gpc Abstand aus SNe I1a Helligkeit m mit absoluter Helligkeit M=-19.6: m=24.65 und log d=(m-M+5)/5) -> log d=(24.65-19.6+5)/5=9.85 -> d = 7.1 Gpc

First evidence for vacuum energy in universe: ACCELERATION of universe Expansion velocity=slope Acceleration=derivative of slope

SNIa compared with Porsche rolling up a hill SNIa data very similar to a dark Porsche rolling up a hill and reading speedometer regularly, i.e. determining v(t), which can be used to reconstruct x(t) =∫v(t)dt. (speed  distance, for universe Hubble law) This distance can be compared later with distance as determined from the luminosity of lamp posts (assuming same brightness for all lamp posts) (luminosity  distance, if SN1a treated as ‘standard’ lamp posts) If the very first lamp posts are further away than expected, the conclusion must be that the Porsche instead of rolling up the hill used its engine, i.e. additional acceleration instead of decelaration only. (universe has additional acceleration (by dark energy) instead of decelaration only)

Aus Geschwindigkeitsmessungen kann man Vergangenheit und Zukunft des Universums rekonstruieren. Vergleiche mit Tennisball: wodurch wird er abgebremst? Schwerkraft oder Gravitation. Wenn mann Geschwindigkeiten entlang Bahn misst, kann man Zeitpunkt des Anfangs bestimmen Und berechnen wann er wieder zur Erde zurueckkehrt oder auch ob er ins Weltall verschwinden wird. So auch bei Messung der Geschwindigkeiten der Galaxien. Man kann fruehere Expansionsgeschwindigkeiten messen aus SN explosionen, deren Licht uns erst jetzt erreicht. Aus Dopplerverschiebung des Lichts dieser SN kann mann Geschwindigkeit bestimmen. Aus Helligkeit Kann man den Abstand bestimmen. Man findet eine beschleunigte Expansion, d.h. Expansion des Universums wird nicht nur durch Gravitation abgebremst, sondern erfaehrt auch eine Beschleunigung, wie z.b. Heliumballon durch die Erde angezogen wird, aber gleichzeitig durch die Wechselwirkung mit der umgebende Luft nach oben fliegt. Fuer einen Mondbewohner oder Astronaut im Weltall wuerde diese nach oben fliegende Heliumballon eine abstossende Gravitation bedeuten. Welche Wechselwirkung das Universum so eine beschleunigte Expansion erfahren laesst, ist nicht klar. Wir nennen es DE. Diese Energie macht ca. 73% der Energie des Universums aus.

Altersabschätzung des Universum für =1 Oder dS/dt = H S oder mit S = kt2/3 2/3 k t-1/3 = H kt2/3 oder t0 = 2/(3H0)10.109 a Richtige Antwort: t0  1/H0  14 . 109 a, da durch Vakuumenergie nicht-lineare Terme im Hubbleschen Gesetz auftreten (entsprechend abstoßende Gravitation). 0=1/H0, da tan α = dS / dt = S0 / t0 uni = 2 / 3H0

Wie groß ist das sichtbare Universum für =1? Naiv: R = ct0 ist Radius des Universums. Dies ist richtig für ein statisches Universum ohne Expansion. Mit Expansion: R = 3ct0. Beweis (Wiederholung): Betrachte sphärische Koor. (R,θ,,t) und mitbewegende Koor. (,θ,,) und Lichtstrahl in Ri. =θ=0. Dann gilt: R = c t und  = c , weil c = unabh. vom Koor. System Aus R = S(t)  folgt dann: R = c S(t)  = ct, d.h. ZEIT skaliert auch mit S(t)! Daraus folgt:  =  d =  dt / S(t) oder mit S(t) = kt2/3  = c d = c k/t2/3dt = (3c/k) t1/3 Oder R0= S(t)  = 3 c t0 = 3 x 3.108 x 14.109 x 3.107 = 3.7x1026 cm = 3.7x1026/3.1x1016=12 Gpc

Zum Mitnehmen: 1. Zeitabhängigkeit des Skalenfaktors: S = kt2/3 2. Alter des Universums für  = 1 und ohne Vakuumenergie: t0 = 2/(3H0)  10 . 109 a Dieser Wert ist zu niedrig, weil die beschleunigte Expansion durch die Vakuumenergie vernachlässigt wird. 3. Größe des sichtbaren Universums für  = 1: 3ct0 (ohne Expansion: ct0)

Allgemeinen Relativitätstheorie ART Beschreibt Gravitation als Jetzt Grundlagen der Allgemeinen Relativitätstheorie ART Beschreibt Gravitation als Krümmung der Raum-Zeit

Friedmannsche Gl. und Newtonsche Mechanik Die Friedmannsche Gleichungen der ART entsprechen Newtonsche Mechanik + Krümmungsterm k/S2 + E=mc2 (oder u=c2) + Druck ( Expansionsenergie im heißem Univ.) + Vakuumenergie (=Kosmologische Konstante) Dies sind genau die Ingredienten die man braucht für ein homogenes und isotropes Universum, das evtl. heiß sein kann (Druck ≠ 0)

Licht empfindet Gravitation??? Nach der bekannten Einsteinschen Energie-Masse-Beziehung kann man dem Photon der Energie h×f eine Masse zuordnen. Es gilt: Gravitation wirkt auf Masse: wird Energie des Photons sich ändern im Grav. Feld???? Erwarte für Höhe H = 22.5m: Frequenzverschiebung im Gravitationsfeld wurde von Pound und Rebka mit Mössbauereffekt bestätigt!! Wie kann man dies messen?

Mössbauereffekt http://www.uni-duisburg.de/FB10/LAPH/Keune/hs/Utochkina.pdf PRINZIP: eneergieniveaus sehr scharf. Ohne Energieverluste starke Absorption Durch die extrem kleine natürliche Breite der Kernniveaus werden Energieverluste im Gravitationsfeld schon Absorption verhindern. Absorption kann wieder hergestellt werden durch die Photonen ein bisschen mehr Energie zu geben durch die Quelle langsam zu bewegen, bis die Gravitationsverluste ausgeglichen sind

Pound-Rebka Versuch: Licht empfindet Gravitation (1960) In 1960, R. Pound and G. Rebka, Jr. at Harvard University conducted experiments in which photons (gamma rays) emitted at the top of a 22.57 m high apparatus were absorbed at the bottom, and photons emitted at the bottom of the apparatus were absorbed at the top. The experiment showed that photons which had been emitted at the top had a higher frequency upon reaching the bottom than the photons which were emitted at the bottom. And photons which were emitted at the bottom had a lower frequency upon reaching the top than the photons emitted at the top. These results are an important part of the experimental evidence supporting general relativity theory which predicts the observed "redshifts" and "blueshifts."

D.h. der Raum ist gekrümmt! Einsteins Gedankenexperiment: Licht durch Gravitation abgebogen D.h. der Raum ist gekrümmt!

Äquivalenzprinzip

Raumkrümmung

Raumkrümmung

Gravitation = Scheinkraft Scheinkräfte können verschwinden: Zentrifugalkraft = 0 in einem ruhenden System (ω = 0) Corioliskraft = 0 in einem ruhenden System (ω = 0) Schwerkraft = 0 in einem geschickt beschleunigten System Elektrisches Feld um ein Elektron niemals 0!

Abbiegung im Gravitationsfeld der Sonne Scheinbare Verschiebung der Sternen hinter der Sonne, Beobachtbar bei Sonnenfinsternis!

Raumkrümmung in 1919 von Eddington beobachtet. Einsteins ART bestätigt Mond Verschiebung der Positionen der Sterne von Eddington gleichzeitig in Westafrika und Brasilien beobachtet. Vorhersage nach Newton: δ=0.87 Bogensekunden Vorhersage nach Einstein: δ= 2 x 0.87 Bogensekunden durch zusätzliche Zeitverzögerung !

Sonnenfinsternis von 1919 machte Einstein berühmt

Grundidee der Allgemeinen Relativitätstheorie

Zeitverzögerung im Gravitationsfeld

Zeitverzögerung im Gravitationsfeld

Zeitverzögerung im Gravitationsfeld

Licht empfindet Gravitation ( Details in: S. Weinberg, Gravitation and Cosmology!

Beschleunigung = Gravitation = Raumkrümmung Äquivalenzprinzip bedeutet: Beschleunigung = Gravitation = Raumkrümmung t0 t´ Höhe Zeit B C D A Experiment: bringe Cs Uhr von A->B und messe Zeit(=n Wellenberge) bis C. Vergleiche mit Uhr in A bis gleiche Anzahl an Wellenberge. Durch Rotverschiebung läuft Uhr bei BC anders als bei AD, da c‘=c(1+) (siehe vorherige Seite). D.h.tt0  AB nicht parallel DC oder Raum gekrümmt durch Gravitation! Cs Uhr in A: zähle Freq. des Lichts. Bring Cs Uhr nach B, Uhr geht langsamer. Ueberlege, bis Uhr in C Und hole Uhr zurueck. Wieder ok, aber in BC war Uhr langsamer, to t’ ungleich t, Raum verzerrt.

Extremste Form der Raumkrümmung: Schwarzes Loch  3 km

Ein Schwarzes Loch wird sichtbar durch Zuwachs

Extremste Form der Raumkrümmung: Schwarzes Loch SL umgeben von Akkretionsscheibe, Durch Drehimpulserhaltung rotiert einfallende Materie immer schneller bei kleinen Radien und bildet Akkretionsscheibe, die heiss wird und Röntgenstrahlung aussendet. Magnetfeld im Zentrum sehr hoch, wo Beschleunigungsprozesse der geladenen Teilchen stattfinden. Diese führt zu Materieströmen aus dem Zentrum (Jets). Praktisch jede Galaxie hat im Zentrum ein SL. In der Milchstraße sichtbar durch Drehung einiger Sterne um einen sehr kleinen Radius mit sehr Hoher Geschwindigkeit.

Größe und Dichte eines SL. Radius eines SL: R = 2GM/c2, d.h. wächst mit Masse! Masse unseres Universums, die kritische Dichte von 10-29 g/cm3 (1023 M☼) entspricht, liegt auf diese Linie, d.h. es ist nicht ausgeschlossen, dass wir in einem SL leben. J. Luminet

Zum Mitnehmen: Licht empfindet Gravitation. Lichtquant (Photon) hat effektive Masse m = E/c2 = hν/c2 Materie krümmt den Raum und Weltlinien folgen Raumkrümmung. Diese gekrümmte Weltlinien erzeugen für Licht Gravitationslinsen und Schwarze Löcher