b-Spektrometrie Liquid Scintillation Counting

Slides:



Advertisements
Ähnliche Präsentationen
Radiochemische Spurenanalytik: Übersicht
Advertisements

Zugehörigkeitsfunktion (Wahrheitsfunktion) m
Lanthanoide als Marker in der Fluoreszenzspektroskopie
Wechselwirkung und Reichweite von Strahlung
Frequenzabhängige Leitfähigkeit des Elektronenglases Si:P Marc Scheffler, Boris Gorshunov und Martin Dressel 1. Physikalisches Institut, Universität Stuttgart.
Der wichtigste biologische Prozess auf unserer Erde
Abkürzungen mit Präpositionen German Prepositional Contractions
Radioaktivität begleitet uns unser ganzes Leben
Inhalt Wechselwirkung zwischen Atomen und Infrarot-Strahlung
You need to use your mouse to see this presentation.
Edukte Produkte N2 + 3 H2 2 NH3 + Kontrolle 2 N 2 N 6 H.
Radioaktivität begleitet uns unser ganzes Leben
Die Natriumlinie und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz.
PHYSIK zur STRAHLUNG in der FERNERKUNDUNG
Sonnenspektrum Fraunhofer Linien = schwarze Linien im Sonnenspektrum.
How Does Fuzzy Arithmetic Work ? © Hartwig Jeschke Institut für Mikroelektronische Schaltungen und Systeme Universität Hannover
Energy Supply Michelle, Philipp, Gregor. Table of Contents 1.energy industry 2.political view to the energy turnaround in Hamburg 3.Hamburg as "European.
Fachdidaktik Englisch III – Classroom Management & ICT – Institut für Erziehungswissenschaft Abteilung Lehrerinnen- und Lehrerbildung Maturitätsschulen.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Titelmasterformat.
Spektroskopische Methoden
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
Akkusativ Präpositionen
Teammeeting NTW, Uta Bilow International Masterclasses 2013.
Realisation of a Substitution Method to Perform High Precision Density Measurements of Seawater Hannes Schmidt Henning Wolf Egon Hassel.
Atomphysik Lösungen.
Pierre Auger Observatory. Pierre Auger( ) Was a nuclear physics and cosmic ray physics. Made cosmic ray experiments on the Jungfraujoch Discovery.
3rd Review, Vienna, 16th of April 1999 SIT-MOON ESPRIT Project Nr Siemens AG Österreich Robotiker Technische Universität Wien Politecnico di Milano.
Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC B. Epp 1, V.M. Ghete 2, E. Kneringer 1, D. Kuhn 1, A. Nairz 3 1 Institut für Experimentalphysik,
Licht sind kleine Teilchen
ATLAS TRT Aufgabe und Funktion d. Detektors
Olaf Hartmann NPC Austrian Research Promotion Agency FFG EUREKA in Austria Österreichische Forschungsförderungsgesellschaft | Sensengasse 1 | 1090 Wien.
I U T Institut für Umwelttechnologien GmbH 1.
Magnetenzephalogramm, MEG
© Crown copyright 2011, Department for Education These materials have been designed to be reproduced for internal circulation, research and teaching or.
Stahl-Zentrum Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl 1 | © Stahlinstitut VDEh | Wirtschaftsvereinigung Stahl Welcome to Düsseldorf.
Wärmelehre Einige Erläuterungen.
Fakultät für Gesundheitswissenschaften Gesundheitsökonomie und Gesundheitsmanagement Universität Bielefeld WP 3.1 and WP 4.1: Macrocost.
Untersuchung von Sternenlicht
Stabile Isotope und Radioisotope: Messtechnik und Anwendungen
Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: Office:
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Timing RPC for prompt gamma.
Fachhochschule Burgenland GmbH - University of Applied Sciences Studienzentrum Eisenstadt, Campus 1, A-7000 Eisenstadt, Tel.: +43 (0) Studienzentrum.
Steroidhormone und ihre Rezeptoren Warum wichtig: regeln viele Entwicklungsprozesse und bei Wirbeltieren: Sexualität relevante Prozesse 1.Molekularer Mechanismus.
QUEST-Meeting, 14. Dez. 2007, Offenbach Parametrisierung der Verdunstung in einem 2-Momenten-Schema Axel Seifert Deutscher Wetterdienst, Offenbach Geschäftsbereich.
Thermodynamische Untersuchung der chemischen und elektrochemischen Gleichgewichte mit Beteiligung von wässerigen Schwefelverbindungen bei umgebend und.
Streulicht seli GmbH Automatisierungstechnik Dieselstraße Neuenkirchen Tel. (49) (0) 5973 / Fax (49) (0) 5973 /
LLP DE-COMENIUS-CMP Dieses Projekt wurde mit Unterstützung der Europäischen Kommission finanziert. Die Verantwortung für den Inhalt dieser.
Monitoring System in the federal state of Saxony-Anhalt, Germany Meeting on monitoring systems , May 2012, Prague Christine Makiol,
Linde AG : Transparent data enable efficient plant engineering
Präsentation zur Projektphase „Frühjahr 2006“
Licht und Photonen © Dr. Rolf Piffer.
Scientific Reasoning in Medical Education
Hoch-beta Experiment am
Total S.A.: Comos etabliert sich als zentrale Engineering Software
Process and Impact of Re-Inspection in NRW
MONTESSORI- METHOD FOR DOGS
by repeated premix emulsification
Telling Time in German Deutsch 1 Part 1.
IT QM Part2 Lecture 7 PSE GSC
Results from CO2 heat pump applications
Ferrite Material Modeling (1) : Kicker principle
Management of new and historical pollution sources
ELECTR IC CARS Karim Aly University of Applied Sciences.
Official Statistics Web Cartography in Germany − Regional Statistics, Federal and European Elections, Future Activities − Joint Working Party meeting.
Calorimetry as an efficiency factor for biogas plants?
 Präsentation transkript:

b-Spektrometrie Liquid Scintillation Counting Robert Schupfner

b-Spektrometrie Verfahren der Radioanalytik von b-Strahlern, das in der Lage ist sowohl die Energieverteilung von b-Teilchen aufzunehmen, als auch die Aktivität von b-Strahlern zu bestimmen. Detektormaterialien - Halbleiter, z.B. Si - NaJ(Tl) Festkörper - Plastikszintillatoren - Flüssigszintilatoren Flüssigkeiten Detektionsprinzip: LSC (Liquid Scintillation Counting) b-Spektren Vorteile-, Nachteile

Detektionsprinzip: LSC (Liquid Scintillation Counting) Unabhängig voneinander entdecken Kallman und Reynolds et al. (1950), dass bestimmte organische Verbindungen fluoreszierendes Licht nach Bestrahlung mit Kernstrahlung (ionisierender Strahlung) emittieren. Die Floureszenz oder die Emission von Photonen durch eine organische Verbindung ist ein Ergebnis

Detektionsprinzip: LSC (Liquid Scintillation Counting)

b-Spektrometrie: Mechanismus des LSC Die floureszierenden Verbindungen sind oft in niedrigen Konzentrationen Der sekundäre Szintillator hat ca. 1/10 der Konzentration des primären Die Energie, die durch die Kernstrahlung abgegeben wird, wird zu einem größeren Anteil von den Lösungsmittelmolekülen absorbiert Ein Teil der absorbierten Energie bewirkt eine Anregung der p-Elektronen der Lösungsmittelmoleküle Diese Energie wird dann auf die weniger häufigen Szintillatormoleküle übertragen besonders auf die Moleküle des primären Szintillators Diese emittieren die aufgenommene Energie mittels Anregung als Photonen im sichtbaren oder nahen ultraviolettem Bereich Ist die emittierte Wellenlänge durch die Photokathoden des Photomultiplier nicht effektiv nachzuweisen, so werden sekundäre Szintillatoren eingesetzt Diese können die Photonenenergie, die vom primären Szintillatormolekül emittiert wird, absorbieren und als Licht höherer Wellenlänge wieder emittieren, für die die Photokathoden eine höhere Zählausbeute besitzt.

b-Spektrometrie: Mechanismus des LSC Ionische Anregung in (wenig gebräuchlichen) aliphatischen Lösungsmitteln wie Hexan und Cyclohexan. Die Rekombination der Ionen führt zur Übertragung der Energie auf den primären Szintillator Direkte elektronische Anregung in (gebräuchlichen) aromatischen Lösungsmitteln Die elektronische Anregungsenergie ist zuerst am Lösungsmittelmolekül lokalisiert mit einer Anregungslebensdauer von 10-8 s und wird übertragen auf das floureszierende Molekül

b-Spektrometrie: Anwendungen Szintillationscocktails Flüssiszintillationscocktails bestehen aus einer oder mehreren flourezierenden aromatischen Verbindungen gelöst in einem oder mehreren organischen Lösungsmitteln. Eine sekundärere flourezierende Verbindung wird angewendet, um eine Flourenzenzemission bei einer Wellenlänge zu erhalten, die am effizientesten von den Photomultipliern detektiert werden kann (blau). Wirkungsweise und Auswahlkriterien von Szintillationscocktails

b-Spektrometrie: Szintillationscocktails (Lösungsmittel) Flammpunkt Toluol 7°C nicht mischbar mit Wasser  anwendbar nur auf organisch gebundene Radionuklide Xylole 25 -32°C mischbar mit Wasser (30-40 %)  anwendbar für wässerige Lösungen von Radionuklide 1,2,4-Trimethylbenzol 49°C Dioxan Primäres Lösungsmittel Hoch giftig; Flammpunkt: 12° C Paradioxan Naphtalin Sekundäres Lösungsmittel Triton X-100 (Octylphenoxipolyethoxyethanol) Keine giftigen Dämpfe; Flammpunkt: 150°C Lagerzeit in einem Polyethylen-Vial 2 Monate, wirkt als Szintillator (hphys = 33% für 33P); Maximale Wellenlänge im Floureszenzemissions-spektrum bei 345 nm kombinierbar mit Toluol Siloconöl nicht flüchtiges Lösungsmittel zur Absorption und Messung von radioaktiven Gasen in Luft Benzylalkoholmischungen (BAM) Mischungen von Benzylalkohol, Ethylalkohol, Ethylenglykol

b-Spektrometrie: Fluoreszierende Verbindungen primäre PPO (2,5-Diphenyloxazol) fast ideale Wellenlänge der Fluoreszenz: 380 nm PMP (1-phenyl-3-mesityl- 2-pyrazol) Wellenlänge der Fluoreszenz: > 400 nm; gute Löslichkeit in Toluol ( > 1 mol·l-1) hphys (14C,PMP) > hphys (14C,PPO) hphys (3H,PMP) ≈ hphys (3H,PPO) hphys (BPD) > hphys (PPO) niedrige Löslichkeit, hohe Kosten BPD (2-phenyl-5-(4-biphenyl)-1,3,4-oxadiazol) sekundäre POPOP (2,2´-Paraphenol bis-5-phenyloxazol) Dimethyl-POPOP (1,4-bis´-2(4-methyl-5-phenyloxazol)-benzol) bis-MSB (p-bis(o-methylstyryl)-benzol) Salicylamid in p-Xylol hphys (14C) = 75 %, hphys (32P) = 95 % Dioxan mit 2 g·L-1 Salicylamid

b-Spektrometrie: Szintillationscocktails 3,0 g PPO (primärer Szintillator); 0,1 g POPOP sekundärer (Szintillator); Gelöst in 1 L Toluol Detektion von Radionukliden in nicht-wässerigen Lösungen 10 g PPO; 0,1 g POPOP in 1 L Triton-X-100 8 g PPO; 0,01 g bis-MSB in 1 L Triton-X-100 7 g PPO; 0,5 g bis-MSB; 300 mL of Liponox NCH or Nonion NS-210; 750 mL Xylol und 10 µL conc HNO3 Detektion von Radionukliden in wässerigen Lösungen 8,25 g PPO; 0,25 g dimethyl-POPOP und 0,5 kg Triton-X pro 1 L Toluol 5 g PPO; 0,1 g POPOP gelöst in 1 L 2:1 (vol:vol) Toluol: Triton-X-100 QuickSave; QuickSzint, Ultima Gold, usw.

Detektionsprinzip: LSC (Liquid Scintillation Counting)

Detektionsprinzip: LSC (Liquid Scintillation Counting)

Detektionsprinzip: LSC (Liquid Scintillation Counting)

b– und ec-Spektren b-Energien /keV Radionuklide HWZ *) Mittel*) Maximum**) Tritium (HTO, OBT) 12,323 y 5,683 ≈ 20 C-14 5730 y 49,45 ≈ 200 P-32 14,26 d 694,7 ≈ 1700 P-33 25,34 d 76,6 ≈ 200 S-35 87,5 d 48,83 ≈ 200 Ca-45 163 d 77,23 ≈ 300 Fe-55 1005 d ca. 5,5 ec Ni-63 36536 d ca. 20 ≈ 70 I-125 59,41 d 35,49 ec I-131 8,02 d 191,5 ≈ 600 *) HWZ: Halbwertszeit (nach Karlsruher Nuklidkarte, 6. Auflage 1995).

b-Spektrometrie: Radionuklide

b-Spektrometrie: LSC (Beispielspektren) 41Ca; 45Ca 55Fe 63Ni 90Sr (90Y) 99Tc 129I 241Pu

neutron activation sth / barn Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 55Fe and 59/63Ni neutron activation sth / barn 54Fe (n,g) 55Fe 2,25 58Ni (n,g) 59Ni 4,6 62Ni (n,g) 63Ni 14,2

Decay Properties Example: 55Fe and 59/63Ni Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 55Fe and 59/63Ni Decay Properties

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg 63Ni is the leading nuclide in several decades with regard to radioactivity. Steel from secondary steam generators (abbreviated: SDE) from a German nuclear power plant at Gundremmingen, A. --------- SDE 1; _________ SDE 3.

b-Spektrometrie: LSC-Spektren

b-Spektrometrie: LSC-Spektren

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg Example: 41Ca, 45Ca site of formation: Ca containing structure materials within nuclear power reactors which are exposed to neutrons for a long period of time. For example concrete of biological shielding.

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg Decay properties Consequences for analytical development:  dissolution of sample material (concrete)  radiochemical purification of 41Ca, 45Ca  optimising the sample preparation with a suitable scintillation cocktail  activity determination applying LSC Quantulus 1220

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg Determination of Calibration Factors of 41Ca versus Content of Ca2+ in the Sample Solution

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg Lower Limit of Detection (lld) of 41Ca versus Content of Ca2+ in the Sample Solution

Application to a Real Sample from a Biological Shielding Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg Application to a Real Sample from a Biological Shielding

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities ? Robert Schupfner, Environmental Radioactivity Laboratory, Institute of Analytical Chemistry, University of Regensburg Lower Limit of Detection (lld) of 41Ca versus Content of Ca2+ in the Sample Solution  Minimum lld at about 1200 to 1300 mg Ca2+: 0,05 Bq 41Ca ·(g Ca2+)-1  value of lld is proportional to the activity of 45Ca, A(45Ca) in the sample: lld (m) = lld (m, A(45Ca)=0) + k· A(45Ca) with: k  0,008 Bq 41Ca ·(g Ca 2+· Bq 45Ca )-1  assuming a content of Ca of about 20 % in concrete: the LSC method tolerates 5,5 to 7,5 g of concrete after a reliable radiochemical purification  a minimum value of about 0,0141Ca ·(g concrete)-1 can be realised

Example: 90Sr (90Y) Sr Sr Y  until now: high expense Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 90Sr (90Y) 89 Sr 90 Sr 90 Y Starting nuclide 89 As 90 Se 90 Se Fission yield 4,764% 5,835% 5,835% 90 Decay Product 89 Y(stable) Y(radioactive) 90 Zr (stable) Half Life Time 50,5 d 29,12 a 2,761 d Decay Constaqnt 1,37·10 -2 d -1 6,52·10 -5 d -1 2,51·10 -1 d -1 Decay b - , (g) b - b - , (g) Energy 583,3 keV 195,7 keV 934,8 keV Probability Y 1 ( Bq ·s) -1 1 ( Bq ·s) -1 1 ( Bq ·s) -1  until now: high expense  development: significant less expense

Example: 90Sr (90Y)  90Y is in radioactive equilibrium with 90Sr Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 90Sr (90Y)  90Y is in radioactive equilibrium with 90Sr  Determination of chemical yield applying 88Y 88 Y 88 Sr + e - nuclide Half life time E/keV y i Decay / (Bq s) -1 g -radiation Y-88 106,63 d 898,2 0,94 1836,0 0,9933 ec -radiation ca. 11 ca. 1  90Sr Determination after Liquid -Liqid Eytraction of 90Y using Di-(2-Ethylhexyl)-phosphate (C16H35O4P) HDEHP

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 90Sr (90Y) Dissolution of Sample Material Containing 90Sr (90Y) Chemical Yield Tracer 88Y (11 Bq) Sample Solution Sr2+, Y3+ Liquid -Liquid Extraction of 90Y, 88Y in HDEHP Na+, K+, Cs+, Mg2+,Ca2+, Sr2+,Co2+, U, Pu, Am, and other interfering nuclides Re-extraction of 90Y, 88Y in 9 m HCl Washing Fe3+ LSC Precipitation of Y(OH)3

Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 90Sr (90Y)

Example: 90Sr (90Y) Fig. 1: LSC-Spectrum of 11 Bq 88Y and blank Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 90Sr (90Y) Fig. 1: LSC-Spectrum of 11 Bq 88Y and blank Fig. 2: LSC-Spectrum of 11 Bq 88Y and 21 Bq 90Y and blank

Parameters of determination of 90Sr (90Y) in concrete Application of LSC Methods on Radiochemical Problems Arising with Decommissioning of Nuclear Facilities Example: 90Sr (90Y) Parameters of determination of 90Sr (90Y) in concrete Parameter Material 9,9 g concrete Dissolution HCl (32 %) Analysis Extraction of Y with HDEHP Detection LSC Quantulus Berthold LB770 h ( 90 Y) / Ips/Bq 0,79 ± 0,02 0,43 ± 0,01 phys. h /% 84 ± 7 chem. range of time /h < 0,1 1 radiometric titrimetric 88 Y(ca. 11 Bq) stable Y n /Ipm about 72 about 0,5 life time t /min 1000 1000 L lld/Bq/g 0,003 0,0005 ld/Bq/g 0,005 0,0008

b-Spektrometrie: Optimale Einstellung Methode: „figure of merrit“ (FOM) hphys² R0 FOM  Falls Maximum, Messung mit niedrigst möglicher Nachweisgrenze Anwendung →Variieren der ROI (region of interest) →Berechnen des physikalischen Wirkungsgrades hPhys(ROI) →Ermittlung der Nulleffektszählrate R0(ROI) →Berechnung des FOM Werts. →Variieren der ROI bis FOM-Wert Maximal.

b-Spektrometrie: Optimale Einstellung Methode: „figure of merrit“ (FOM) – Beispiel:55Fe

b-Spektrometrie: Quench und Quenchkorrektur Der breite Einsatz der LSC-Methode für den Nachweis von b-strahlenden Radiotracern ist vor allem auf den hohen physikalischen Wirkungsgrad mit der einfachen LSC-Routinetechnik zurückzuführen. Hoher physikalischer Wirkungsgrad durch den effizienten b-Teilchen-Lösungsmittel-Szintillatormolekül- Energietransferprozess. die 4p (360°) Probenzählgeometrie, da der Szintillationscocktail mit den Radionuklidatomen vermischt. Prinzipielles Problem: Quenching Quecher sind chemische Verbindungen, die die gesamte Licht-quantenausbeute vermindert  Reduzierung der Szintillationspulshöhe  Herabsetzung des physikalischen Wirkungsgrads

b-Spektrometrie: Quench und Quenchkorrektur chemische Quencher Wechselwirken auf chemisch mit dem Lösungsmittel-Szintillatorsystem so, dass sie die Prozesse des Energietransfers vom Lösungsmittel zum Szintillator hemmen. Farbquencher Absorbieren Licht im sichtbaren Bereich und reduzieren so die Intensität der Photonen, die die Photokathoden des PMT´s erreichen.

b-Spektrometrie: Quench und Quenchkorrektur Klassifizierung von chemischen Quenchern Starke Quencher Schwache Quencher Lösungsmittel RCOR RCOOH RCOOR RCHO RCN=CHR ROH R3N RNH2 ROR RSH RSR (RO)3PO RI RBr RCl RNO2 RF gelöstes O2 RH

b-Spektrometrie: Quench und Quenchkorrektur Klassifizierung von Farbquenchern Wellenlänge lmax der maximalen Absorption des einzelnen Quechers Starke Quencher lmax: 380 – 480 nm mittelere Quencher lmax: 480 – 520 nm schwache Quencher lmax: 520 – 560 nm Kein Quencher lmax >560 nm Korrektur durch - Internen Standard - Externen Standard

b-Spektrometrie: LSC und andere Messmethoden Liquid Scintillation Counting (LSC) Advantages  detection of low radiation energies  high values of counting efficiency  low background counting rates for example LSC Quantulus 1220  ability of energy resolution enables an increased selectivity  low values of lower limits of detection  a variety of suitable scintillation cocktails is commercially available Disadvantages  as a rule application only after radio- chemical purification procedure  increased expense to assure high quality  high costs of low background counting devices (LSC Quantulus 1220)  energy resolution is rather limited  increased expense of sample preparation in sample solutions with high salt content  stability of sample-cocktail mixture in sample solutions with high salt content

b-Spektrometrie: Quench und Quenchkorrektur Szintillationscocktails Messgeräte - high level Bereich - low-level Bereich Anwendungsbereiche - Einsatz radioaktiv markierter Verbindungen - Bestimmung niedriger Aktivitäten Oberflächenkontamination, Umweltradioaktivität, Freigabeverfahren, Inkorporationskontrolle