Folgereaktionen A  B  C A B C Konzentration Zeit t 1-2.

Slides:



Advertisements
Ähnliche Präsentationen
Algorithmentheorie 08 – Dynamische Programmierung (1)
Advertisements

Simulation komplexer technischer Anlagen
Bild 1.
Industrial Chemistry - C.v.O.-University of Oldenburg -
Elektrolyte Teil II Solvatation, elektrische Leitfähigkeit, starke
Kunststoffe Kunststoffe sind Werkstoffe, die künstlich oder durch Abwandlung von Naturprodukten entstehen und aus organischen Makromolekülen aufgebaut.
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Numerik partieller Differentialgleichungen
FH-Hof Optimierungsverfahren für kombinatorische Probleme Richard Göbel.
Herstellung von Dispersionskolloiden über einen Keimbildungsprozeß
BCD Ripple Carry Adder von Enrico Billich.
WS Algorithmentheorie 02 - Polynomprodukt und Fast Fourier Transformation Prof. Dr. Th. Ottmann.
WS Algorithmentheorie 08 – Dynamische Programmierung (2) Matrixkettenprodukt Prof. Dr. Th. Ottmann.
WS Algorithmentheorie 08 – Dynamische Programmierung (3) Konstruktion optimaler Suchbäume Prof. Dr. Th. Ottmann.
Computerkurs: Quantitative Auswertung biochemischer Experimente
Computerkurs: Quantitative Auswertung biochemischer Experimente Tag 8 Einführung in die numerische Integration Aufgabe 18: Simulation einer Assoziationskinetik.
Technische Universität Darmstadt
Enzymkinetik.
Vorlesung Regelungstechnik 2
Zeitreihenanalyse WS 2004/2005 Michael Hauhs / Gunnar Lischeid
AC Analyse.
Die Kräfte sind bekannt
1Ausgewählte Themen des analogen Schaltungsentwurfs Sprungantwort.
AC Analyse. 2Ausgewählte Themen des analogen Schaltungsentwurfs Sprungantwort.
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R
Variationsformalismus für das freie Teilchen
Gleichgewichte in Systemen reversibler chemischer Reaktionen
Reaktionskinetik-Einführung
Exponential- u. Logarithmusfunktionen
Algebraische Gleichungen
Sali zäma.
Beschreibung der energetischen Zustände der Elektronen
Fettbildung und -abbau
Masse ist zu Energie äquivalent
Gleichungssysteme Galip Turan.
Kurvendiskussion Los geht´s Klick auf mich! Melanie Gräbner.
VO Allgemeine Chemie Bernhard Keppler, Vladimir Arion, Herbert Ipser, Regina Krachler Dienstag, 9.30 – Uhr Mittwoch, Uhr.
Numerische Lösung chemischer Gleichungen
Quantum Computing Hartmut Klauck Universität Frankfurt WS 04/
Masse ist zu Energie äquivalent
Masse ist zu Energie äquivalent
das d‘Alembert Prinzip
Die Reaktionsgleichung
von Renate Pauer Susanne Haberl am 11. April.2011
Algebraische Schleifen und Strukturelle Singularitäten
Einführung ins Lösen von Gleichungen
REAKTIONSKINETIK.
Lineare Gleichungen mit 2 Variablen
Technische Frage Technische Frage Bitte löse die folgende Gleichung:
Deutung der Arrhenius-Gleichung für eine bimolekulare Reaktion
Extremalprobleme Extremalprobleme sind Anwendungsprobleme.
Die Wege - Modellierung und Simulation von biochemischen Stoffwechselpfaden Ursula Kummer EML Research gGmbH.
Vom graphischen Differenzieren
Oxidation von Alkoholen mit Kaliumpermanganat
6. Kohlenwasserstoffe – Alkane, Alkene, Alkine, Arene – Molekülbau, Reaktionen und Herstellung Moleküle, die nur Kohlenstoff und Wasserstoff enthalten,
  Kunststoffe.
Referent: Stefan Burgemeister
3 Das chemische Gleichgewicht 3
Das Massenwirkungsgesetz (MWG)
Berechnung molarer Reaktionsenthalpien: Der Satz von Hess
1 Rechnen mit der Reaktionsgleichung Problem: Oktan (C 8 H 18 ), ein Bestandteil des Benzins, verbrennt im Motor zu Wasser und Kohlendioxid. Welche Menge.
Die Herstellung polymerer Kunststoffe Eine Präsentation von Jannik Schophaus.
Lineare Optimierung Nakkiye Günay, Jennifer Kalywas & Corina Unger Jetzt erkläre ich euch die einzelnen Schritte und gebe Tipps!
Differentialgleichungen oder wie beschreibt man Veränderung
Differentialgleichungen oder wie beschreibt man Veränderung
Moleküle-Viergewinnt
Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum
Kleines 1x1 ABCD Aufgaben Kleines 1x1 A · 8 = Lösung.
WPU Angewandte Naturwissenschaften
Exponential- funktionen
 Präsentation transkript:

Folgereaktionen A  B  C A B C Konzentration Zeit t 1-2

Beispiele für Folgereaktionen Radioaktive Zerfall (Uran Actinium Reihe) 239Pu  235U  Th231 RX + OH-  ROH + X- RX  R+ + X- R+ + OH-  ROH SN1- Reaktion 1-2

Folgereaktionen: Zeitgesetz und Geschwindigkeitsgleichung für A A  B  C k1 k2 1) Zeitgesetz und Geschwindigkeitsgleichung für den Verbrauch von A -d [A]/dt = k1 [A] [A] = [A]o e-k1t Zerfall von A Entspricht einer Reaktion 1. Ordnung 1-2

Zeitgesetze zur Enstehung von B und C k1 k2 A  B  C 1) Zeitgesetz und für die Entstehung von B d[B]/dt = k1 [A]- k2 [B] = ka [A]o e-k1t – k2 [B] 1) Zeitgesetz für die Entstehung von C d[C]/dt = k2 [B] Wird verbraucht Entsteht aus A Aus dem Integrierten Geschwindigkeitsgesetz für A 1-2

Geschwindigkeitsgleichung für B Die Umformung des Zeitgesetzes ergibt es eine linare Differentialgleichung 1. Ordnung: d[B]/dt + k1 [B] = k1 [A]o e-k1t Lösung nach der Lagrangschen Methode der Variation der Konstanten [B] = [A]o k1/(k2-k1) (e-k1t - e-k2t) Die Schwierigkeit liegt darin, dass zwei Terme B enthalten Wedler S. 869 Das Lösungsverfahren nach Lagrange wird nicht abgefragt 1-2

Geschwindigkeitsgleichung für C Ansatz: [A]o = [A] + [B] + [C] (die Summe der Einzelkonzentrationen muß = [A]o sein) Geschwindigkeitsgleichung umstellen nach [C] & ersetzen von [A] + [B]: [C] = [A]o -[A]o e-k1t - [A]o k1/(k2-k1) (e-k1t - e-k2t) [A]o ausklammern, auf einen Nenner bringen & wegkürzen liefert das Ergebnis: [C] = [A]o (1- k2/(k2-k1) e-k1t + k1/(k2-k1) e-k2t) Ansatz und Ergebnis sind wichtig für das Verständnis der Folgereaktionen 1-2

Bestimmung der Zeit bei der die maximalen Konzentration von B erreicht ist Zeit t Am Wendepunkt ist dB / dt = 0 1-2

d[B]/dt wird 0, wenn die Terme der Klammer gleich sind Bestimmung der Zeit bei der die maximalen Konzentration von B erreicht ist B ist unser Intermediat: [B] = [A]o k1/(k2-k1) (e-k1t - e-k2t) differenziert: (hier brauchen wir die Ableitung der Exponentialfunktion) d[B]/dt = - [A]o (k2 / (k2-k1)) (k1e-k1tmax – k2e-k2tmax) Am Wendepunkt ist d[B]/dt = 0, dann ist tmax berechenbar: Ergebnis: tmax = 1 / (k1 – k2) ln(k1/k2) d[B]/dt wird 0, wenn die Terme der Klammer gleich sind Atkins S. 899 1-2

Was passiert wenn k2 und k1 sehr unterschiedlich sind ?! Wedler S. 871 Bei dieser Gleichung ist eine Grenzwertbetrachtung interessant: [C] = [A]o (1- k2/(k2-k1) e-k1t + k1/(k2-k1) e-k2t) Grenzfall 1: k2 <<< k1 [C] = [A]o (1- e-k2t) Grenzfall 2: k1 <<< k2 [C] = [A]o (1- e-k1t) Der Reaktionsverlauf wird durch die langsamere der beiden Folgereaktionen bestimmt 1-2

Unterschiedliche Verhältnisse der Geschwindigkeitskonstanten Wichtig ist hier, wie sich der Konzentrationsverlauf mit den unterschiedlichen ks verändert A  I  P

Geschwindigkeitsbestimmende Schritte Die kleinere der Geschwindigkeitskonstanten bestimmt den Reaktionsverlauf berechnet

Geschwindigkeitsbestimmende Schritte

Die Näherung quasistationärer Zustände A  B  C Konzentration C A Die Konzentration von B bleibt über einen langen Zeitraum stabil d[B]/dt  0 B Zeit t 1-2

Vereinfachung der mathematischen Behandlung der Reaktion A  B  C Gleicher Ansatz d[B]/dt = k1 [A]- k2 [B] = k1 [A]o e-k1t – k2 [B] Bodenstein:d[B]/dt  0 daraus folgt:[B]  k1 / k2 [A]o e-k1t Produktentstehung: d[C]/dt = k2 [B]  k1 [A]o e-k1t Ergebnis der Integration entspricht Grenzfall k1 << k2 :: [C] = [A]o (1- e-k1t) Für die Integration: F(e-at) und e0 = 1 1-2

Vergleich des exakten Konzentrationsverlaufs und der Näherungslösung Für A ändert sich nichts Beachten Sie die großen Unterschiede am Anfang

Die Rückreaktion ist viel schneller als die Reaktion zu C Vorgelagerte Gleichgewichte: 1. Fall: Produktentstehung stört das Gleichgewicht nicht Atkins S. 902 A+B I  C k1 k-1 k2 Aus der Gleichgewichtsbedingung folgt: Kgl = [I] / ([A] [B]) = k1 / k-1 wenn wir [I] aus der obrigen Gleichung ersetzen folgt: d[P]/dt = k2 Kgl [A] [B] = k2 k1/k-1 [A] [B] Die Rückreaktion ist viel schneller als die Reaktion zu C Reaktion 2. Ordnung 1-2

A+B I  C k1 k2 k-1 d[I]/dt = k1 [A] [B] - k-1 [I] - k2 [I]  0 Vorgelagerte Gleichgewichte 2. Fall: Berücksichtigung der Weiterreaktion zum Produkt A+B I  C k1 k-1 k2 d[I]/dt = k1 [A] [B] - k-1 [I] - k2 [I]  0 aus der Bodensteinschen Näherung folgt: [I] = (k1 /(k-1 + k2 )) [A] [B] und damit für dP/dt : d[P]/dt = (k2 k1 /(k-1 + k2 )) [A] [B] k2 kommt hinzu 1-2

Kinetische Isotopeneffekte 1-2

Primäre und sekundäre kinetische Isotopeneffekte Primärer KI- Effekt Sekundärer KI- Effekt Abb aus Atkins

Beispiele für kinetische Isotopeneffekte

Lindemann-Mechanismus Warum sind viele Gasreaktionen 1. Ordnung, obwohl bimolekulare Ereignisse eine Rolle spielen ?! Stoss aktiviert: 1. Term Term 1 Term 2 Term 3 d[A*]/dt = k1 [A]2 -k-1 [A][A*] -k2 [A*] k-1 k1 Stoss deaktiviert: 2.Term k2 Produkt entsteht: 3.Term Lindemann-Mechanismus

Lindemann-Mechanismus für unimolekulare Gasreaktionen Atkins S. 907 Bodensteinsche Näherung: 0 ≈ k1 [A]2 -k-1 [A][A*] -k2 [A] Geichung nach [A*] auflösen  [A*] = k1 [A]2 /(k-1 [A] +k2) Produktentstehung: d[P]/dt = k2 [A*] [A*] einsetzen  d[P]/dt = k2 k1 [A]2 /(k-1 [A] +k2)

Lindemann-Mechanismus für unimolekulare Gasreaktionen Atkins S. 907 d[P]/dt = k2 k1 [A]2 /(k-1 [A] +k2) Grenzwert 1: k2 << k-1 [A] d[P]/dt = [A] (k2 k1 /k-1) k2 im Nenner verschwindet, dadurch fällt ein [A] weg Hier liegt eine Reaktion 1. Ordnung von (eher Deaktivierung als Produktentstehung) Bei niedrigen Partialdrücken kommt es zu einem Wechsel der Reaktionsordnung (der [A] Term in der Grenzfall-Betrachtung) Grenzwert 2: k2 >>k-1 [A] d[P]/dt = k1 [A]2 Hier liegt eine Reaktion 2. Ordnung von

Kettenreaktionen und Explosionen 1-2

Kinetik von Kettenreaktionen ohne Verzweigung Atkins S. 921 CH3CHO (g)  CH4 (g) + CO (g) r = k [CH3CHO]3/2 Kettenstart: CH3CHO  •CH3 + •CHO r = ks [CH3CHO] Fortpflanzung: CH3CHO + •CH3  CH4 + CH3CO • r = kf [CH3CHO] [•CH3] Fortpflanzung: CH3CO •  •CH3 + CO r = kf [CH3CO•] Abbruch : CH3 • + •CH3  CH3CH3 r = ka [•CH3]2 Ziel: Eliminierung der Intermediate in der finalen Gleichung 1-2

Einsatz der Näherung des quasistationären Zustandes Quasistationäre Näherung annehmen und Gleichungen addieren (führt zur Vereinfachung) d[•CH3] /dt = ks [CH3CHO] - kf [CH3CHO] [•CH3] +kf [CH3CO•]-2ka[•CH3]2 d[CH3CO•] /dt = kf [CH3CHO] [•CH3] - kf [CH3CO•] Ergebnis: [•CH3] = (ks /2ka)1/2 [CH3CHO]1/2 d[CH4] /dt = kf (ks /2ka)1/2 [CH3CHO]3/2 Intermediate wurden eliminiert 1-2

Nachweis von Radikalen-Paneth Versuch

Nachweis von Radikalen -Elektronenspinresonanz Simulated EPR spectrum of the CH3 radical Messung von Molekülen mit ungepaarten Elektronen Organische und anorganische Radikale Konzept ist ähnlich der Kernspinresonanz, aber hier werden die Elektonenspins und nicht die Kernspins angeregt. Anregung im Mikrowellenbereich

Knallgas-Explosion 2H2(g) + O2 (g)  2 H2O Kettenstart: H2 H • + •H r = ks Fortpflanzung: H2 + •OH  H• + H2O r = kf [•OH] [H2] Verzweigung: •(O2) • + H•  •O • + •OH r = kv [•(O2)•] [H•] H2 + •O •  •OH + H • r = kv’ [•O • ] [H2] Abbruch : H• + Wand  1/2 H2 r = ks [H•] H• + O2 + M  HO2 • + M* r = ks [H•] [M*] [O2] Im Gegensatz zu normalen Kettenreaktionen gibt es hier einen Verzweigungsschritt 1-2

Knallgas-Explosionen Thermische Explosion Trimolekularer Zusammenstoss Abreaktion mit der Wand 1-2

Wahrscheinlichkeit von Explosionsreaktionen Verzweigung: Engels, Raid S.1134 A + B  R• ks ka P2 fR• + P1 kv Start: Verzweigungsgrad Abbruch: Ansatz: d [R•] /dt = ks[A] [B] - kv [R•] + f kv [R•] - ka [R•] = G + keff [R•] Gesucht: Gleichung die eine Abschätzung der Explosionsbedingungen erlaubt 1-2

Differenzieller Geschwindigkeitsausdruck Integrierte Form: [R•] = G/keff (ekefft-1) keff = kv (f -1) – ka Grenzwertbetrachtung: Fall: ka >>kv  keff = - ka  [R•] = G/ka (1- e-kat) 2 Fall: kv >>ka  keff = kv (f -1) [R•] = (G/(kv (f -1)) (ekv (f -1)t -1) Das Integrationsverfahren sparen wir uns Der Exponentialterm verschwindet Der Exponentialterm kann gegen unendlich gehen: Explosion 1-2

Synthese von Polymeren Schrittweise Polymerisation Kettenpolymerisation Viele Ketten entstehen gleichzeitig: Polykondensation Eine Kette wird immer länger: Radikalischer Mechanismus Beispiel: Perlon, Nylon Beispiel: Polyvinylchlorid

Zeitverlauf der schrittweisen Polymerisation

- d[A]/dt = k2 [OH] [COOH] Kinetische Behandlung von schrittweisen Polymerisationen: Polyesterkondensation 1) Geschwindigkeitsgleichung für die Reaktionen zweiter Ordnung - d[A]/dt = k2 [OH] [COOH] 2) Zeitgesetz für Reaktionen zweiter Ordnung 1/[A] - 1/[A]o = k2 t Atkins S. 927

[A]ok2 t +1 = [A]o/[A] = <n> Polymerisationsgrad Kinetische Behandlung von schrittweisen Polymerisationen: Polyesterkondensation 2) Zeitgesetz für Reaktionen zweiter Ordnung 1/[A] - 1/[A]o = k2 t Umstellen: [A]ok2 t +1 = [A]o/[A] = <n> Polymerisationsgrad Bruchteil P der Moleküle die schon reagiert haben: P=([A]o-[A])/[A]o = k2 t [A] = k2 t [A]o /(1+k2 t [A]o) Polymerisationsgrad <n> ausgedrückt durch den Bruchteil der Moleküle die schon reagiert haben: <n> = 1/(1-P)

Radikalische Polymerisationen Start: Dissoziation und Monomer Generierung Kettenwachstum Kettenabbruch - Rekombination - Disproportionierung - Kettenübertragung